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Abstract— In this work, an image registration method for
two retinal images is proposed. The proposed method utilizes
keypoint correspondences and assumes a spherical model of
the eye. Image registration is treated as a pose estimation
problem, which requires estimation of the rigid transformation
that relates the two images. Using this estimate, one image can
be warped so that it is registered to the coordinate frame of the
other. Experimental evaluation shows improved accuracy over
state-of-the-art approaches as well as robustness to noise and
spurious keypoint correspondences. Experiments also indicate
the method’s applicability to diagnostic image enhancement and
comparative analysis of images from different examinations.

I. INTRODUCTION
Small vessel structure and function assessment can lead

to more accurate and timely diagnosis of diseases whose
common denominator is vasculopathy, i.e. hypertension and
diabetes [1]. Small vessels exist in all internal and external
organs. Of them, the retina provides an open and accessible
window for assessing their condition. Retinal vessels are
imaged through fundoscopy, an efficient and non-invasive
imaging technique that is suitable for screening. Accurate
image registration is of interest in the comparison of images
from different examinations [2] and in the combination of
multiple images into larger [3] or enhanced [4] ones.

Image registration has been employed frequently on
slightly overlapping images of the same examination, to
create mosaic images of large tissue areas, i.e. [3]. Small
overlap increases examination efficiency, but increases reg-
istration difficulty as it is based on less data. This difficultly
is tackled by strong registration cues, such as keypoint
correspondences, i.e. [5].

Not frequently, image registration has been employed to
register images of (approximately) the same retinal region.
Motivation is twofold. First, to combine images from the
same examination into an image of higher resolution, facil-
itating more precise measurements, [6], [7], [4]. Second, to
register images from different examinations and compara-
tively analyze them [2], [8].

In this work, the image registration problem refers to a
pair of images, the reference and the test image. Its solution
is the aligning transformation that warps the test image so
that the same physical points are imaged in the same pixel
coordinates as in the reference image. Henceforth, image

This research was made possible by a Marie Curie grant from the
European Commission in the framework of the REVAMMAD ITN (Initial
Training Research network), Project number 316990.

1Institute of Computer Science, Foundation for Research and Technology
– Hellas (FORTH), Heraklion, Greece.

2Computer Science Department, University of Crete, Heraklion, Greece.
{carlos, zabulis, argyros} at ics.forth.gr

registration methods which provide a solution by means of
transformation(s) upon the image plane are characterized
as “2D”, while methods which account for the retina as a
surface imaged from different views as “3D”.

The proposed method focuses on the cue to image registra-
tion due to keypoint correspondences. The additional value of
other cues is acknowledged; i.e. edge, bifurcation matching.
The proposed framework is open to additional cues and their
adoption is left for future work.

II. RELATED WORK
For retinal image registration, overlapping image regions

have been matched using similarity of intensities over spatial
regions [9] or the frequency domain [10], keypoint feature
correspondences [5], retinal feature matching i.e. vessel trees
[11], bifurcations [12]. Feature-based approaches are pre-
ferred in 3D approaches, as point correspondences comprise
a relatively stronger cue for estimating the motion between
two images and, also, are robust to local image differences.

Retinal image registration has been studied using 2D and
3D transformation models. 2D models do not explicitly
account for perspectivity [11], though some [12] employ non-
linear transformations for this purpose. 3D models account
for perspectivity, but require the shape of the imaged surface.
Consideration of perspectivity improves image registration.
Even simple surface models, as a planar patch, were shown to
promote registration accuracy [4]. At the other end, in [5],
the retinal surface is reconstructed to achieve registration.
However it requires a stereo reconstruction of the retina,
which for significantly overlapping images is inaccurate due
to the very short baseline.

Fundus imaging has been modeled by the pinhole camera
model [5]. Usually lens distortion has been judged as negli-
gible, due to the fine optics of fundus cameras. Visual dis-
tortions due to the cornea, the eye lens, the vitreous humor,
as well as pulsation, have been approximated as negligible.
We also follow these approximations, acknowledging that
compensating for pertinent distortions, would increase the
accuracy of the proposed method.

The proposed method utilizes a 3D cost optimization
method that is robust to correspondence errors and copes
with local minima. Efficiency is supported by a parallel
implementation and evaluation shows improved performance
with respect to state-of-the-art. The method is open to the
addition of more visual cues (i.e. due to edges, intensity).

III. METHOD
The proposed method estimates the rigid transformation

{R, t} that relates the reference (F0) and the test (Fr) image,
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Fig. 1. The geometry of the objective function.

as the motion between the two frames. It assumes a spherical
eye model centered at cs = [0, 0, 0]T and, at distance δ,
a calibrated camera, located at cc = [0, 0,−δ]T ; K is the
intrinsic camera matrix. Equivalently, this estimate can be
also expressed as the relative pose of the retina between the
two frames if a static camera is assumed. Hypothesis, or
“candidate pose”, with id h regards camera motion {Rh, th}.

Hypotheses are generated in a 6D search space around
an initial pose estimate. This estimate is optional and, if
unavailable, is the identity transformation {I, 0}.

Candidate poses {Rh, th} are generated and evaluated
with the aid of objective function o({Rh, th}) as follows.
Given the eye’s model, an image point can be ray-traced
to the 3D location on the retina that it images. Ideally, in
the correct pose, corresponding keypoints should co-occur,
while for increasingly inaccurate poses their distances would
accordingly increase (see Fig. 1). Function o(·) accumulates
these spatial disparities exhibiting a minimum (ideally 0) at
the correct configuration. As correspondences across the two
images may include matching errors, function o(·) uses a
percentile of the matches to safeguard from outliers.

The 6D, iterative, search for the pose that yields the best
score is optimized using Particle Swarm Optimization (PSO)
[13], a derivative-free stochastic optimization framework .

A. Keypoint Features

SURF features [14] were selected as keypoints, due to
their improved robustness to spurious matches and their lo-
calization accuracy [15]. SURF keypoints have been reported
to be more reliable than other keypoints in retinal images
[4]. Keypoints are matched as in [16]. For color images, the
“green” channel is used, as it offers a higher contrast [17].

B. Objective Function

The objective function returns a score for candidate pose
{Rh, th}. Given the (reference or candidate) camera pose,
keypoints can be ray-traced to 3D locations on the spherical
model of the retina. This is achieved by finding its intersec-
tion with the optical ray through the keypoint. The Navarro
eye model [18], for the eye dimensions (ρ = 12mm) is
utilized, with the origin at the center of this spherical eye
model. The sphere equation is: ‖x−cs‖2 = ρ2 where x is a
point on the sphere, cs is the center of the sphere and ρ its
radius. To find x, the ray equation from the camera center c
(cc or ch) and through pixel u is solved for λ:

x = P+u+ λc, (1)

where P+ = PT (PPT )−1 (see Eq. 6.13, [19, p. 162]).
Let qi the 3D locations of keypoints in F0. The 3D

locations of keypoints from the test image are determined
by pose {Rh, th} (see Fig. 1). Let pi,h the 3D locations of
keypoints in Fr, for pose hypothesis h. The 3D distances
of corresponding 3D locations are di,h = |qi − pi,h|. A
selection for o(·) could be the accumulation of distances
di,h. To obtain robustness to spurious matches, a percentile
of these matches is used instead:

o({Rh, th}) =
∑
j

dj,h, (2)

where j enumerates the smallest 70% values of di,h.To
combine more cues Eq. 2 can be amended with further terms,
i.e. accumulating edge distances.

C. Particle Swarm Optimization

Minimization of o(·) is performed via PSO, an iterative,
stochastic optimization method. PSO involves np particles
that evolve for ng generations, amounting to a total of
np ·ng objective function evaluations. This product is called
the “budget” of an optimization and represents a trade-off
between accuracy and speed of execution. The particles in the
first generation are initialized randomly in the search space,
communicate in every generation, and converge towards
particles that yield the best values of o(·). Due to the
independence of particles pertaining to each generation, their
execution is performed in parallel on the CPU.

The search space is a 6D hypercube, centered around
an initial pose. In the general case, this pose is the same
with the reference pose {I,0}. Poses are parameterized as
translations along and rotations about the 3 axes. Thus th =
[tx,h ty,h tz,h]

T , while Rh = Rx(rθ,h) ·Ry(rφ,h) ·Rz(rω,h).
The search space around the initial pose is denoted as
[µx, µy, µz, γθ, γφ, γω], meaning that tx,h ∈ [−µx/2, µx/2]
and correspondingly for the rest of dimensions.

D. Cascaded Particle Swarm Optimization

Despite the robustness to local minima, due to multiple
particles that simultaneously search pose space, particle
communication in PSO may still be entrapped in a local
minimum. Though local minima do not provide a better score
than the correct solution, this phenomenon can occur due
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to sparse particle distribution. To cope with these cases, 3
cascaded variants (B, C, and D) of the original optimization
process (A) were considered. These variants perform chained
PSO executions. In the first stage, the initial pose is {I,0}.
The search range is a 6D hypercube around this pose. In
succeeding stages, the result of the preceding execution is
pipelined as the initial pose estimate.

In each execution, 64 particles are reserved to be initialized
at the corners of the hypercube, to ensure a widespread par-
ticle allocation. In succeeding executions of the optimization
process, an extra particle is initialized at the estimate of the
previous stage, so that it is considered in the optimization.
The rest of the particles are randomly initialized.

A. Single stage. This is the baseline method of Sec. III-C.
B. Coarse-to-fine. PSO is executed twice. In the second

execution, the search space is a smaller hypercube centered
at the estimate of the first execution. The same budget is
retained, but the hypercube is constrained in all 6 dimensions
thus defining a denser search. In the second execution, the
range is [µxα ,

µy
α ,

µz
α ,

γθ
α ,

γφ
α ,

γω
α ] and α = 3.

C. Pairing of conflicting dimensions. PSO is executed
thrice. It is based on the observation that in the 6D neigh-
borhood of the correct pose local minima occur. The 6D
locations of these minima correspond to poses for which
points pi,h occur at very proximate locations. Small changes
in rφ and in tx can have a similar effect on pi,h, as
they induce displacement vectors that are very similar, thus,
different locations in the pose space yield similar objective
function scores. A similar effect occurs for ty and rθ. Thus,
in the second execution, the range is [µxβ ,

µy
α ,

µz
β ,

γθ
α ,

γφ
β ,

γω
β ],

centered around the first estimate. In the third execution, the
range is [µxα ,

µy
β ,

µz
β ,

γθ
β ,

γφ
α ,

γω
β ] centered around the second

estimate. Here α� β, meaning that in the second execution
the search will be mostly along µy and γθ and in the third
execution in µx and γφ. Values of α = 3, β = 30 were
chosen empirically; future work aims at their optimization.

D. Independent executions. Variant C is executed multi-
ple times (10), independently. The result with the best score
is adopted. Motivation stems from countering unfortunate
randomization of particle velocities. This differs from a
single PSO with 10 times the particles as, due to particle
communication, it can be entrapped in a local minimum.

E. Image registration result

Estimate {R, t} is used to warp the test image Fr, so
to be registered to the reference F0. The result, Fw, is
parameterized upon the coordinate frame of the reference
image F0. Each pixel coordinate u in F0 corresponds to a
3D location x on the retina (Eq. 1). The intensity at each
pixel in Fw is provided by the image formation rule below:

Fw(u) = Fr(P · x), (3)

where P = K ·[R, t] is the projection matrix of the camera at
the estimated pose. For the employed dataset, δ (≈ 57.7mm)
is known from device specifications. Inaccuracies in its value
do not affect the registration result, as δ determines only the
scale factor up to which the translation component of the

estimated transformation is found; it has no impact on pixel
correspondence and, thereby, the formation of Fw.

IV. EXPERIMENTS

Both synthetic and real data were utilized in the experi-
ments. Synthetic data were generated in order to have ground
truth about camera poses in evaluation experiments. The data
were generated using the texture from a fundus image, to
render a retina at multiple, known poses at small and larger
departures from the reference pose. The resolution of the
simulated camera was 2912 × 2912 pixels and its Field of
View (FOV) was 45◦ in both dimensions. The poses for the
synthetic images are denoted {tx, ty, tz, rθ, rφ, rω}, where
translations are expressed in mm and rotations in degrees.

Real data were acquired from a Nidek AFC-210 fundus
camera, with parameters identical to the above. In Fig. 2, 3
real fundus image pairs are shown. Left and middle pairs,
were acquired in the same examination and demonstrate a
small and a larger transformation, respectively. The images
of the right pair, were acquired 1 year apart. In Fig. 3,
registration results for these pairs are shown demonstrating
registration accuracy. Image registration from temporally
different examinations is clinically important, in order to
track retinal changes across time and monitor vessel state. In
Fig. 2 right, the images present mild changes, as in the width
of the arterioles and venules, due to disease. Robustness to
pathological alterations is a topic of future work.

Experiments were run on a conventional PC with an i7-
4770 CPU, at 3.40GHz and 16GB of RAM. The duration
of SURF feature matching is ≈ 1.5 sec. A single particle
evaluation takes less than 0.1 sec. Computational time was
dominated by PSO which, with variant C, ng = 200 per
stage and np = 2500 per generation being typically about
60 sec. For the same parameters, variant D lasts ≈ 600 sec.

In evaluation experiments where ground truth was avail-
able (Sec. IV-A, IV-B, and IV-C), the accuracy of the
proposed method was measured as a pose estimation error.
Error is quantified as in [20], which is the average distance
between corresponding model points xκ at the ground truth
and the estimated pose. For a ground truth pose {Rg, tg} and
an estimate {Rh, th}, the error expresses their misalignment
and is given by:

E =
1

ν

ν∑
κ=1

|gκ − eκ|, (4)

where gκ = Rg · xκ + tg , eκ = Rh · xκ + th, and ν is
the number of model points. Though measuring the error
in 3D is more expressive, this error can be converted to 2D
error by projecting points gκ, eκ on F0 and accumulating the
respective 2D distances. The purpose of such a conversion
is comparison with a 2D method (in Sec. IV-D).

A. Multiple swarms

This experiment evaluates the effect of distributing budget
across multiple swarms has to accuracy, versus assigning
its entirety in a single swarm. Fig. 4 shows that running
multiple swarms and selecting the one with the best score,
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Fig. 2. Fundus images pairs acquired in the same examination (left, middle) and from examinations 1 year apart (right).

Fig. 3. Registration results for the image pairs of Fig. 2, respectively. The collages show, alternatively, the green channels of the reference and registered
image. The marked region with solid black line indicates the magnified image detail shown on the right.
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Fig. 4. Registration error evolution with the amount of particles used per
generation for our method using 3-stage PSO with 100 generations. Each
experiment was run 10 times with 1 PSO swarm.

results in a better estimate than utilizing the entire budget in
a single swarm. For example, picking the best result of 10
runs with np = 1000 is more likely to provide a better result
than a single run with np = 10000. We choose to run 10
independent swarms in each experiment, adopting variant D.

B. Comparison of PSO variants

The PSO variants are evaluated having adopted the strat-
egy of applying multiple swarms (Sec. IV-A). Preliminary
experiments indicated that the pairs of conflicting dimen-
sions (tx-rφ and ty-rθ) were causing the optimization to be
entrapped in local minima when running variant A. Variants
A, B, and C using 10 swarms each (similarly to D) were
evaluated with increasing amounts of np. Variant A used a
1-stage PSO with ng = 300 generations, B a 2-stage PSO
with ng = 150, and C a 3-stage PSO with ng = 100.

The results of this experiment are shown in Fig. 5.
Each graph shows the mean registration error for 3
pairs of images with similar magnitude of pose dif-
ferences; small pose differences are on the left (i,e.
{0.1, 0.1, 0.3,−0.1, 0.1, 0.1}) and larger pose differences on
the right (i.e. {−1.5, 0,−1,−8, 5, 5}). As the center of
rotation is cs, rotations of even 0.1◦ are not negligible
(see Fig. 1). It is observed that for an equal budget, the
pose estimated by C has the smallest error. This is more
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Fig. 5. Registration error evolution vs number of particles for variants A,
B, and C using multiple swarms, for small (left) and large transformations
(right). Plots at the same horizontal coordinate refer to same budgets.

pronounced in smaller budgets. Variant C is found to perform
better than A and B and adopted.

C. 3D pose estimation accuracy

In this experiment, the proposed method is compared with
pose estimation based on point correspondences. Random
Sample Consensus (RANSAC) is employed to solve the
Perspective-n-Point (PnP) problem [21]. This is a conven-
tional approach to pose estimation when correspondences
are available. The approach is robust to spurious matches and
estimates object pose given a set of 2D-3D correspondences,
through minimization of reprojection error.

After matching keypoints in F0 and Fr our data are treated
as follows, to provide input to RANSAC. Let ui and vi
be the 2D locations of matched keypoints in F0 and Fr,
respectively. By Eq. 1 the 3D locations, qi, of ui are found.
Points qi and vi are provided as input to RANSAC, that
estimates the rigid transformation relating the two poses.

Fig. 6 shows that the proposed method, for several com-
binations of np and ng , provides better pose estimation and
thus, better registration, than RANSAC.

Another 3D registration method method is [5], which
reconstructs retinal surface given a sufficiently large baseline.
Besides this difference, a direct quantitative comparison
with this method was unfortunately not possible as the data
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Fig. 6. Registration error for variant D, for 100, 150 and 200 generations
vs number of particles, for a small (left) and a large transformation (right)
between the 2 images. For RANSAC plot in red, see Sec. IV-C.

Error (pixels) This work GDB-ICP [12]
Mean and std all 0.4878 (0.2064) 0.5158 (0.2395)
Mean and std periphery 1.5022 (2.0587) 1.6082 (1.9087)

TABLE I
2D REGISTRATION ERROR (AND STD) FOR ALL CORRESPONDENCES

AND FOR THOSE OCCURRING IN IMAGE PERIPHERY.

employed are multimodal, and no ground truth is available
for them. By qualitative comparison1, the registration results
from the proposed method exhibit higher accuracy than in
the results of [5], in which discontinuities are observed in
vessels when comparing registration results as in Fig. 3.

D. 2D registration accuracy

In this experiment, we compare our results, using a budget
of ng = 200 and np = 2500, with Dual Bootstrap Iterative
Closest Point [12], a widely employed state-of-the-art 2D
retinal image registration method2. The 2D mean distances
of corresponding points after registration were measured as
registration error.

This experiment was performed using 9 real images.
Images 2 to 9 were registered to image 1, thus, registering
8 image pairs. A total of 801 control points were found in
these image pairs, averaging about 100 points per image pair.
Said control points are found using SIFT features, so they
are independent from the SURF features employed for the
registration. Table I, shows the error for all the control points
and for the ones located at the periphery; |u−ci|2 > 0.9 ·r2
where ci is the center of the image and r the distance from ci
to the edge of the image. The proposed method outperforms
[12], particularly in periphery of the image, where the effect
of employing a clinically correct eye model with a known
curvature instead of a quadratic equation is most notable.

V. CONCLUSION

A method for retinal image registration for fundoscopy
images was proposed. Experimental testing shows its in-
creased accuracy and robustness compared to state-of-the-art
approaches.

The relatively large computational cost of the proposed
method is justified by the offline and critical nature of

1The results at http://iris.usc.edu/people/yupingli/research.html were uti-
lized for the comparison.

2The implementation at http://www.vision.cs.rpi.edu/gdbicp/ was utilized.

targeted applications. Acceleration based on parallelization
(i.e. using the GPU) is planned for future work.

Further, future work warrants more sources of information
for more accurate results and the increase of optimized
dimensions to include the shape and size of the retina as
well as the camera parameters.
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