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Abstract— In this paper, a retinal image registration method
is proposed. The approach utilizes keypoint correspondences
and assumes that the human eye has a spherical or ellipsoidal
shape. The image registration problem amounts to solving a
camera 3D pose estimation problem and, simultaneously, an
eye 3D shape estimation problem. The camera pose estimation
problem is solved by estimating the relative pose between the
views from which the images were acquired. The eye shape
estimation problem parameterizes the shape and orientation of
an ellipsoidal model for the eye. Experimental evaluation shows
17.91% reduction of registration error and 47.52% reduction
of the error standard deviation over state of the art methods.

I. INTRODUCTION

Assessment of small vessels in vivo can promote the
diagnosis and monitor the evolution of diseases that present
strong vasculopathy, such as diabetes or hypertension [1].
The eye, and the retina in particular, allows for non-
invasive observation of the microvascular circulation via
fundoscopy [2].

Image registration can assist greatly in that direction. It
aims at warping a test image to the coordinate frame of a
reference image, so that corresponding points are imaged at
the same locations. For images acquired during the same
session, if they present small overlap, it can be utilized for
creating mosaics imaging larger areas of the retina [3], [4],
[5]. If the overlap is large, the images can be combined
to images of higher resolution and definition [6], [7], [8],
promoting more accurate measurements. Images acquired
at different sessions allow for longitudinal studies of the
retina [9], [10], which enable monitoring disease progression.

Besides being a useful clinical tool, retinal image regis-
tration is also a challenging problem, as images acquired at
different times or from different viewpoints can present illu-
mination, color, and contrast changes as well as potentially
small overlapping areas. The support of medical diagnoses
requires precise measurements. Therefore, the requirements
on registration accuracy are very high.

II. RELATED WORK

Image registration methods utilize the parts of the ob-
served scene that are commonly visible in the image pair
to be registered. This information extraction is performed
either globally or locally or using a mixture of both. Global
methods are based on similarity of intensities, with retinal
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registration methods usually relying on mutual informa-
tion [11], [12]. Local methods extract information relying
on localized features, such as keypoint correspondences [8],
[13], [14], [15], [16], [17], vessel trees [18] and bifurca-
tions [4], [19], [20], [21]. Recently, hybrid methods are
gaining traction [22], [23].

The transformation of the images can be estimated on
the basis of either 2D or 3D models. 2D methods do not
explicitly account for perspective, but overcome this by
utilizing non-linear transformations [11], [13], [14], [23].
These transformations do not account for the shape and size
of the eye. 3D models enable metric measurements in 3D that
lack perspective distortion. Simple eye models have proved
to provide accurate registration [16], [17].

In this work, we propose an accurate and robust retinal
image registration method that is local and utilizes a 3D
transformation model. The main improvement over [16],
[17] is the utilization of an ellipsoidal model whose shape pa-
rameters are calculated simultaneously with the pose estimate
that enables image registration. Other improvements include
the utilization of SIFT [24] keypoints instead of SURF [25]
and introduction of a pose estimation initialization.

III. METHOD

The proposed method (Figure 1) registers the reference
(F0) and test (Ft) images by simultaneously estimating the
relative pose of the cameras that acquired the images, as well
as the 3D shape and 3D orientation of an ellipsoidal eye
model. The eye model has semi-axes [a, b, c] and rotations
along said semi-axes [ra, rb, rc] leading to surface E . If a
static camera is assumed, the pose estimate can be calculated
as the pose transformation of the retina between the two
frames. The eye model is centered at cs = [0, 0, 0]T . A
calibrated camera for F0 is located at cc = [0, 0,−δ]T . Kc

and Kt are the intrinsic camera matrices for F0 and Ft.
Point correspondences between the images are utilized to
achieve this registration. An initial pose estimate is calculated
utilizing RANSAC and a spherical model. Subsequently,
Particle Swarm Optimization is utilized to refine this pose,
as well as to estimate the lengths of the semi-axes of the
ellipsoidal model and their rotation. Three variants of the
eye model are formulated and experimentally validated.

A. Eye Models

Three models are utilized in this work. Baseline model is
spherical, as utilized in our previous works [16], [17].
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Fig. 1. Geometry of the proposed registration method.

1) Sphere: The sphere consists of an ellipsoid with equal
axes, which also allows for ignoring their rotation. Thus
[ra, rb, rc] = [0, 0, 0] and [a, b, c] = [ρ, ρ, ρ]. Value ρ =
12mm is chosen as per the Navarro eye model [26].

2) Fixed orientation ellipsoid: The fixed orientation el-
lipsoid consists of an ellipsoid with a defined rotation that
fixes semi-axes a, b and c to be parallel to the x, y and z
axes respectively. Thus [ra, rb, rc] = [0, 0, 0].

3) Ellipsoid: An ellipsoid has three major axes of differ-
ent lengths. These axes can exhibit any rotation with relation
to the camera coordinate system.

B. Solution formulation

A solution S = {R, t,A, Q} consists of relative camera
pose {R, t} and ellipsoid {A, Q}. The 12 parameters to
optimize correspond to the relative rotation R and translation
t between the cameras, as well as the length of semi-axes A
and the rotation Q of the ellipsoidal model. t = [tx ty tz]

T ,
while R = Rx(rθ) · Ry(rφ) · Rz(rω), A is the diagonal
matrix with a−2, b−2 and c−2 as elements and Q = Ra(ra)·
Rb(rb) ·Rc(rc). The search space around the initial pose is
denoted as [γθ, γφ, γω, µx, µy, µz, µa, µb, µc, γa, γb, γc], with
rθ ∈ [−γθ/2, γθ/2] and correspondingly for the rest of
dimensions.

C. Feature correspondences

The proposed method utilizes keypoint correspondences
between the input pair of images F0 and Ft to obtain the
common information that will be utilized to register them.
Our implementation utilizes SIFT [24] keypoint features.
They exhibit significant invariance to geometric transfor-
mations (translation, scaling and rotation) as well as to
illumination changes and have been successfully applied
to retinal image registration [14], [27], [17]. SURF [25]
features were also considered. They are faster to compute,
nevertheless SIFT outperforms SURF in terms of feature
localization accuracy [28], [17].

D. Initialization
An initial candidate solution S0 is estimated by solving the

Perspective-n-Point (PnP) problem utilizing Random Sample
Consensus (RANSAC) [29]. A 3D pose {R0, t0} of an
object is obtained from a set of 2D-3D correspondences
and the camera projection matrix P . This pose is calculated
through the minimization of the projection error between the
2D and the projected 3D points. As the matched keypoints
provide us only with 2D-2D correspondences, and we have
no knowledge regarding {A, Q}, we utilize the spherical
model and the calibration of the cameras to retrieve the 3D
location of the points utilizing Equation 1.

E. Optimization
The estimation of the relative pose of two cameras, as well

as the length and rotation of the semi-axes of the ellipsoid,
is formulated as the solution of an optimization problem
whose goal is the minimization of an objective function.
Given a camera pose, the keypoints of the image are traced
to 3D locations on the ellipsoidal model surface E . This is
performed by calculating the line traversing from the camera
optical center to the keypoint in the image. The intersection
of line and E indicates the 3D position of the point.

Locating the coordinate origin at the center of E , we obtain
the ellipsoid equation xTQTAQx = 1 where x is a point on
E . To estimate x, the line equation from the camera center
c (cc or ch) and through pixel u is solved for λ:

x = P+u+ λc, (1)

where P+ = PT (PPT )−1 (see Equation 6.13, [30, p. 162]).
Points qi are the 3D locations on E of keypoints from

F0. Points pi,h are the 3D locations on E of keypoints from
Ft calculated from Sh (see Figure 1). The 3D distances of
corresponding keypoints on E are di,h = |qi − pi,h|. The
minimization of these distances forms the basis of the defined
objective function to be minimized. To increase robustness
to spurious matches on o(·), a percentile of accumulated
distances di,h is used:

o(Sh) =
∑
j

dj,h, (2)

where j enumerates the smallest 80% values of di,h.

F. Particle Swarm Optimization
A grid-based search of the 12D space of hypotheses to

optimize Equation 2 is computationally prohibitive. Besides,
that would create a discretized version of the problem. Thus,
the objective function of Equation 2 is optimized via Particle
Swarm Optimization (PSO) [31], a stochastic, derivative-
free optimization method successfully employed for pose
estimation not only in this [16], [17] but also in other
domains [32], [33].

PSO performs the optimization via a set of np particles
that evolve during ng generations to explore the search space.
In our particular case, the 12D search space consists of a
hypercube centered around S0. When several PSO stages
are executed in succession, Sh from the previous execution
is utilized as the initial pose.

3248



G. Method variants

Several method variants were considered:
• PSO Pairing Dimensions and Sphere (PDS): This

variant is the method proposed in [16]. It utilizes the
spherical model, no RANSAC initialization, and PSO
is executed three times. First execution is the baseline
method described in Section III-F. In the second execu-
tion the search will be along µy and γθ and in the third
execution along µx and γφ, as in small scale they can
produce transformations with similar geometric effect.

• RANSAC-PSO and Sphere (RPS): This variant is
the method proposed in [17]. It utilizes the RANSAC-
based initialization described in Section III-D before
performing a PSO search.

• RANSAC-PSO and Fixed Ellipsoid (RPFE): Same as
RPS but utilizing the fixed rotation ellipsoid model.

• RANSAC-PSO and Ellipsoid (RPE): Same as RPS
but utilizing the ellipsoid model.

H. Multiple process execution

Both RANSAC and PSO are of stochastic nature, so the
proposed method is non-deterministic, which can lead to
suboptimal results. Due to this, the process comprised by
RANSAC and PSO is executed ns times and the parameters
that gave rise to the best score (objective function minimiza-
tion) is selected as the final solution. We adopt ns = 10 as
suggested in [16], [17]. Execution of multiple swarms leads
to an increase on the computational cost, but this solution
offers increased accuracy, robustness and reliability.

I. Image formation

When the solution S is chosen, Equation 1 is utilized to
estimate the locations of the pixels from Ft on the surface
of the ellipsoid. Then, these locations are projected to the
reference camera utilizing the projection matrix P and the
image reconstructed by bilinear interpolation.

IV. EXPERIMENTS AND RESULTS

One goal of the conducted experiments was to investigate
whether modeling the eye as an ellipsoid, allows for a better
approximation of its real shape and leads to increased accu-
racy in the registration of retinal images. This is achieved by
comparing the registration accuracy of the proposed variants
that use eye models of different complexity and degrees of
freedom. A second goal was to perform a quantitative and
comparative evaluation of the proposed approach to state
of the art methods in retinal image registration that utilize
quadratic image transformation models.

A. Datasets

To support the performed experiments, images were ac-
quired with a Nidek AFC-210 fundus camera. This camera
has a resolution of 2912× 2912 pixels, and a Field of View
(FOV) of 45o both in the horizontal and vertical dimensions.

A collection of 123 image pairs has been classified into
three datasets, regarding parameters of each pair such as the
time between image acquisition, the amount of overlap and

Dataset 1 2 3
# Image pairs 71 44 8
Examination session Same Same Different
Overlap > 75% < 75 % > 75 %
Anatomical changes No No Yes
Indicative application Super Mosaicing Longitudinal

resolution study

TABLE I
THE CHARACTERISTICS OF THE EMPLOYED REAL IMAGE DATASETS.

the presence of large anatomical differences. Each image pair
is member of only one dataset. The characteristics of these
three dataset are summarized in Table I and example image
pairs are in Figure 2.

For evaluating the registration accuracy, the reprojection
error for the control points is calculated. These control points
were obtained by a computational method and verified by a
human supervisor. Given that the proposed method utilizes
SIFT features, alternative features were chosen to maintain
independence from the registration method. SURF features
were utilized due to their reliability and accuracy for retinal
images [8], [16], [17].

Additionally, the success of a method relative to a com-
petitor method is measured for every individual image pair. A
method is considered successful in registering an image pair
if the registration error was at least 2.5% lower compared to
the competitor. Otherwise, the result is considered a tie.

B. Variant comparison

This experiment compares the four variants proposed in
Section III-G so as to identify which performs best in terms
of registration accuracy. The computational cost, in np per
generation, increases with the degrees of freedom.

Table II shows the mean and standard deviation of the error
of the control points for the datasets utilizing the four variants
of the presented method. It is shown that the registration
error decreases as the degrees of freedom increase. This is
the case for all three datasets and it is attributed to the better
approximation of the retina’s shape and pose.

Individual comparison of the losing variants against RPE
are shown in Table III (PDS), Table IV (RPS) and Table V
(RPFE). In all cases, RPE is shown to outperform the other
variants in the majority of image pairs. An analysis of the
statistical significance of RPE with relation to the rest of the
variants utilizing Student’s t-test [34] indicates the results to
be statistically highly significant (P < 0.001) in all 3 cases.

This experiment proves that independently from the char-
acteristics of an image pair, a model that is able to better
approximate the actual shape of the eye assists in performing
more accurate registration. Figure 3 shows examples of
registration results for each dataset with the RPE variant.
It also shows details close to the periphery of the image, for
being challenging areas.

C. Comparison with state of the art

This experiment compares the registration accuracy of the
proposed variant to GDB-ICP [27], a general registration
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Fig. 2. Fundus images pairs acquired in the same examination (left, middle) and from examinations 1 year apart (right).

Fig. 3. Registration results for the image pairs of Fig. 2, respectively. The collages show, alternatively, the reference and registered images. The marked
region with solid white line indicates the magnified image detail shown on the right.

Dataset 1 2 3 Total
Error PDS 0.590 1.630 1.333 0.709

(0.317) (1.391) (0.620) (0.627)
Error RPS 0.566 1.356 1.257 0.658

(0.284) (1.20) (0.517) (0.532)
Error RPFE 0.557 1.111 1.115 0.623

(0.273) (0.787) (0.478) (0.405)
Error RPE 0.533 0.920 1.060 0.582

(0.252) (0.560) (0.392) (0.329)

TABLE II
VARIANT COMPARISON. MEAN (AND STD) REGISTRATION ERROR (IN

PIXELS).

Dataset 1 2 3 Total
RPE is better 60.56% 65.90% 62.50% 62.60%
PDS is better 19.71% 22.72% 25.00% 21.13%
Tie 19.71% 11.36% 12.50% 16.26%

TABLE III
RPE VS PDS. PERCENTAGE OF IMAGE PAIRS IN WHICH THE PROPOSED

METHOD PERFORMED MORE ACCURATELY THAN PDS.

method widely employed with retinal images [13], [19], [35],
[36]. GDB-ICP when configured for registering retinal im-
ages utilizes a quadratic transformation model, thus, sharing
a similar approximation to our method.

The employed GDB-ICP implementation1 may not yield
a result if it is unable to find a satisfactory registration
for a given image pair. This is the case in 33.33% of the
proposed image pairs, as opposed to the proposed method
which always yields a result. Comparing the results of the
proposed method between Tables II and VI it is observed
that when the error of the proposed method is calculated in
the whole dataset, it increases, thus showing that the pairs

1We utilized the implementation provided by the authors at
http://www.vision.cs.rpi.edu/gdbicp/exec/

Dataset 1 2 3 Total
RPE is better 59.15% 54.54% 62.50% 57.72%
RPS is better 22.53% 34.09% 25.00% 26.82%
Tie 18.30% 11.36% 12.50% 15.44%

TABLE IV
RPE VS RPS. PERCENTAGE OF IMAGE PAIRS IN WHICH THE PROPOSED

METHOD PERFORMED MORE ACCURATELY THAN RPS.

Dataset 1 2 3 Total
RPE is better 50.70% 61.36% 62.50% 55.28%
RPFE is better 22.53% 25.00% 25.00% 23.57%
Tie 26.76% 13.63% 12.50% 21.13%

TABLE V
RPE VS RPFE. PERCENTAGE OF IMAGE PAIRS IN WHICH THE PROPOSED

METHOD PERFORMED MORE ACCURATELY THAN RPFE.

missed by GDB-ICP present increased registration difficulty.
Table VI summarizes the results for this experiment. The

proposed method provides a lower average registration error
across all datasets. Additionally, the proposed method is
shown to outperform GDB-ICP in the majority of image
pairs. The errors displayed in this experiment are lower than
for Table II; this is due to the error being computed over
less image pairs (i.e., the ones for which GDB-ICP provided
a result). This indicates that the proposed method is more
robust, as it copes with these challenging cases, with just
a marginal increase of error compared to less demanding
cases. Statistical significance analysis of RPE with relation
to GDB-ICP indicates the results to be statistically significant
(P = 0.0024).

V. CONCLUSION

A retinal image registration method for fundus images is
proposed. The method is based on the simultaneous estima-
tion of (a) the relative 3D pose of the cameras that aquired
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Dataset 1 2 3 Total
Error RPE 0.526 0.790 1.049 0.555

(0.245) (0.414) (0.396) (0.281)
Error GDB-ICP 0.544 0.887 1.249 0.581

(0.254) (0.402) (0.461) (0.300)
RPE is better 46.47% 18.18% 50.00% 36.58%
GDB-ICP is better 22.53% 11.36% 0.00% 17.07%
Tie 16.90% 9.09% 0.00% 13.00%
No GDB-ICP Solution 14.08% 61.36% 50.00% 33.33%

TABLE VI
RPE VS GDB-ICP. TOP: TABLE INTERPRETATION IN TABLE II.
BOTTOM: TABLE INTERPRETATION IN TABLE III; SEE TEXT FOR

BOTTOM, ADDITIONAL ROW.

the images to be registered and, (b) the parameters and the
orientation of an ellipsoidal model of the eye. The performed
experimental evaluation shows that the better the model
approximates the eye, the more accurate the registration.
Additionally, the proposed method is shown to perform better
in terms of robustness and accuracy than GDB-ICP, a widely
employed method for retinal image registration, which also
utilizes a quadratic model for the shape of the retina.
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