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Abstract— This work regards an investigation of the accuracy
of a state-of-the-art, keypoint-based retinal image registration
approach, as to the type of keypoint features used to guide the
registration process. The employed registration approach is a
local method that incorporates the notion of a 3D retinal surface
imaged from different viewpoints and has been shown, experi-
mentally, to be more accurate than competing approaches. The
correspondences obtained between SIFT, SURF, Harris-PIIFD
and vessel bifurcations are studied, either individually or in
combinations. The combination of SIFT features with vessel
bifurcations was found to perform better than other combi-
nations or any individual feature type, alone. The registration
approach is also comparatively evaluated against representative
methods of the state-of-the-art in retinal image registration,
using a benchmark dataset that covers a broad range of
cases regarding the overlap of the acquired images and the
anatomical characteristics of the imaged retinas.

I. INTRODUCTION

Fundoscopy is a non-invasive diagnostic imaging proce-
dure that allows for the acquisition of retinal images. One
of its applications is the diagnosis and treatment of diseases
related to microvascular circulation in the retina [1], such as
hypertension and diabetes [2]. The analysis of retinal images
is facilitated by the ability to register a test image with
a reference one. Registration warps images to a common
reference frame, so that a physical point on the retina is
imaged at the same coordinates in all the warped images.
Registration of retinal images can be used to create images of
higher resolution and definition [3], [4], [5], to stitch images
into a panoramic image of the retina, or a “mosaic” [6], [7],
[8], and to facilitate longitudinal studies on retinopathy [9],
[10].

Registration methods are based on the extraction of com-
mon information between the test and the reference images.
Registration approaches can be categorized as global or local
methods [11]. Global methods compare intensity patterns in
images via correlation metrics. In retinal image registration,
the few existing global methods are based on mutual infor-
mation [12]. Local methods rely on localized features such
as keypoints [13], [14], [15], [5], [16], [17], [7], [18], [19],
[20] or vessel trees [21]. Local methods are more robust to
local changes due to anatomical differences or illumination
artifacts. As such, they are more popular compared to global
methods. The local, keypoint-based approaches consitute the
focus of this work.

1Institute of Computer Science, Foundation for Research and Technology
– Hellas (FORTH), Heraklion, Greece.

2Computer Science Department, University of Crete, Heraklion, Greece.
{carlos, zabulis, argyros} at ics.forth.gr

The type of keypoints used affects the accuracy of the
registration. In this work, we present an investigation of
this impact for the most widely-utilized features in the
literature of retinal image registration. This investigation
regards the registration framework presented in [17], [22].
This framework is chosen for its higher accuracy compared
to state-of-the-art methods and for being representative of
local methods, as it generically treats eye pose and shape
similarly to the most successful state-of-the-art-methods [23],
[24]. In addition, the framework instantiated to use the best
performing keypoint combination is compared to character-
istic, state-of-the-art local approaches.

The employed registration framework detects keypoints in
both test and reference images and then matches them. By
using the established correspondences (which may include
some spurious ones) an initial pose estimation between
the two views is obtained. This is achieved robustly using
the RANSAC [25] algorithm and a spherical eye model.
Using this initial estimate, the relative camera pose and
the eye shape are refined simultaneously, to improve image
registration. The multidimensional pose and shape space is
efficiently searched by Particle Swarm Optimization [26], a
stochastic method that iteratively evaluates hypotheses in the
solution space.

II. KEYPOINT DETECTION AND EXTRACTION

In this work, we evaluate the impact of SIFT, SURF,
Harris-PIIFD and Bifurcations as keypoints used by the se-
lected retinal image registration framework. These keypoints
have been selected for being the most widely employed for
retinal image registration.

Scale-Invariant Feature Transform (SIFT) [27] is the mile-
stone method in extracting characteristic points, or keypoints,
in images. It is a key pillar in applications such as image
mosaicing, robot mapping and navigation, object and gesture
recognition and video tracking. SIFT are general purpose
keypoints that are partially invariant to image translation,
scaling, rotation as well as to illumination and affine distor-
tion. Retinal registration methods utilizing SIFT keypoints
are found in [13], [17].

Speeded Up Robust Features (SURF) [28] is another
widely used method to detect and describe keypoints. It is
partially invariant to image translation, scaling, rotation and
illumination. Retinal registration methods employing SURF
keypoints are found in [5], [16], [29].

Partial Intensity Invariant Feature Descriptor on Harris
Corners (Harris-PIIFD) [30] is a method introduced with the
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main purpose of finding keypoints in multimodal retinal im-
age pairs. PIIFD is invariant to image rotation, and partially
invariant to image intensity and perspective change. Retinal
registration methods employing PIIFD are found in [30],
[31], [29].

Bifurcations, or Y-features, are commonly used in reti-
nal image registration [18], [7], [20], [19]. There exist
different approaches in the literature regarding extraction
and matching of bifurcations. In this work, bifurcations are
extracted based on [19]. For each image from the pair, the
retinal vessel tree is segmented by thresholding the response
of Frangi’s multiscale vessel enhancement filter [32]. The
resulting binary image is skeletonized using Zhang’s thinning
method [33]. Bifurcations are then calculated by selecting
vessel pixels that in their 8-neighborhood, have 3 or 4 non-
adjacent vessel pixels. As bifurcations have no associated
descriptors, in this work SIFT descriptors on the bifurcations
are calculated. The resultant keypoints are matched conven-
tionally as if they were SIFT keypoints.

Diverse types of keypoints may predominantly occur in
different areas of an image, conveying complementary infor-
mation for registration. Feature combinations are expected to
provide more correspondences in complementary locations
on the retina and, in this way, reinforce the accuracy of
results.

III. EXPERIMENTS AND RESULTS
One goal of the experiments is to investigate the retinal

image registration accuracy of the framework in [17], [22],
with respect to the type of utilized keypoints. A second goal
is to compare the most accurate version of that framework
to the state-of-the-art.

A. Datasets

We employed the publicly available1 Fundus Image Reg-
istration (FIRE) dataset [34]. This dataset consists of 129
retinal images forming 134 image pairs, and classified into
3 different subcategories according to different types of
applications.

Category S contains 71 image pairs with high overlap and
no anatomical changes. Of the three categories, it presents
the simplest image pairs to register. Large overlap leads to
the possibility of extracting common information in a large
area of the images, thus having more potential information to
be utilized for the registration. Lack of anatomical changes
facilitates the matching of keypoints, as the information
describing them will be similar in both images. Indicative
application for these image pairs is super resolution.

Category P contains 49 image pairs with small overlap
and no anatomical changes. It presents increased registration
difficulty compared to S. As the overlap between the images
is small, there is less area from which common information
can be extracted, and less potential information to be used for
the registration. Given the relative lack of texture in retinal
images, that is a hurdle for keypoint extraction. Indicative
application for these image pairs is mosaicing.

1http://www.ics.forth.gr/cvrl/fire

Category A contains 14 image pairs with high overlap
and large anatomical changes. Similarly to category P , A
also presents an increased difficulty with respect to S. In
this case, the overlap is large, but there exist anatomical
differences in the image pairs. These differences may appear
in the form of increased vessel tortuosity, microaneurysms,
cotton-wool spots, etc. As a result, features that are visible
in one image, may be occluded in the other. If the same
features are visible in both, they may look different, leading
to the information describing them being different enough
for the keypoints not to be matched. This may cause a low
amount of corresponding keypoints, either in a part, or in the
whole image. Indicative applications for these image pairs
are longitudinal studies on retinopathy.

The top row of Figure 1 shows one image pair for each
of the three categories. Ground truth is provided with the
dataset in the form of corresponding points. Registration
error in Figures 2 and 3 is indicated with a 2D plot inspired
by relevant efforts in the field of evaluating object tracking
methods [35]. The x axis of the plot corresponds to the
value of an error threshold, and the y axis to the percentage
of registered pairs with an average registration error lower
than the corresponding threshold. This creates a continuous,
monotonic curve, which shows success rate as a function of
target accuracy. Thus, the selection of an arbitrary threshold
is avoided. Error is also presented as the Area Under Curve
(AUC) for the plot.

B. Experimental setup

Experiments were run in an Intel Core i7-4770 CPU
@ 3.40GHz with 16GB of RAM memory and a NVIDIA
GeForce GT 730 on Windows 7 Professional. The retinal
image registration framework described in [17], [22] was
utilized. The framework was implemented in C++ with
openCV and CUDA tools. The framework was configured to
use 3 independent PSO swarms, 300 generations per swarm
and 104 particles per generation. In this configuration, the
framework evaluates 9×106 hypotheses2 for each image pair
to be registered, and 1.81× 1010 for the entire FIRE dataset
for each of the 15 combinations of feature types considered
in this study.

C. Keypoint comparison

This experiment aims to compare the impact of the key-
points described in Section II on the accuracy of the regis-
tration framework in [17], [22]. Table I shows the AUC for
every feature combination when registering the FIRE dataset.
Figure 2 shows the result plots for keypoints/keypoint com-
binations. For clarity, only three plots corresponding to the
most accurate results are displayed.

For S the framework performs similarly, independently
from the keypoints used. The exception to this is the utiliza-
tion of Harris-PIIFD, as in this case the framework provides
results one step below the rest. A weak performance in

2In this context, a hypothesis is a candidate solution to the problem, i.e.,
the parameters of the relative camera pose of the two retina views as well
as the eye shape parameters. More details can be found in [17], [22].
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Fig. 1. Top row shows fundus image pairs from categories S, P and A, respectively. Bottom row shows registration results. The collages show the
reference and registered images, alternating in locations where they overlap. The marked region with solid white line indicates the magnified image detail
shown on the right.

this category implies that Harris-PIIFD are relatively weaker
keypoints. When employed, the framework exhibits a weaker
performance for all categories of images in the dataset.

For P , the framework provides the most accurate results
when employing the combination of Bifurcations and SIFT
keypoints. When studying the keypoints in isolation, the
framework provides the best results using Bifurcations, fol-
lowed by the utilization of SIFT.

For A, the framework provides the best results when
using the combination of Bifurcations and SIFT keypoints,
closely followed by the combination of Bifurcations, SIFT
and Harris-PIIFD. When utilizing the keypoints in isolation,
the framework provides the most accurate results when
employing SIFT, closely followed by Bifurcations.

In the FIRE dataset as a whole, and when studying
keypoints in isolation, the framework provides the most
accurate results when employing Bifurcations, followed by
SIFT features. Overall, the best results are obtained when
the framework utilizes the combination of these two types
of keypoints.

In the initial instantiation of the utilized framework [17],
[22] competitive results to the state-of-the-art were obtained
using SIFT features. The results in this section, show that by
utilizing this framework with other keypoints, i.e. SURF or
Bifurcations, is also competitive to the state-of-the-art results.
Moreover, it is found that the accuracy of the approach is
increased, if keypoints that provide complementary informa-
tion are combined. Bifurcations are clear points of interest
located along vessels, which significantly contribute to the
structure of the retinal image. Generic keypoint features
respond to more generic image structure and are found in
more locations, not only in retinal vessels. Out of the generic
keypoint features, SIFT yielded the best results, while adding
more (i.e. SURF) deteriorated performance. The experiments
in this section confirm that combination of complementary
features provides more registration evidence that leads to
more accurate registration results, while retaining all other
factors equal. Given that the utilized framework is represen-

SIFT SURF PIIFD Bifur. S P A FIRE
× 0.945 0.443 0.577 0.721

× 0.947 0.348 0.466 0.675
× 0.846 0.134 0.429 0.538

× 0.953 0.516 0.563 0.751
× × 0.953 0.423 0.526 0.712
× × 0.951 0.396 0.503 0.699
× × 0.958 0.542 0.660 0.773

× × 0.940 0.264 0.426 0.636
× × 0.956 0.404 0.489 0.703

× × 0.954 0.472 0.563 0.736
× × × 0.952 0.333 0.491 0.674
× × × 0.956 0.435 0.480 0.713
× × × 0.959 0.490 0.657 0.754

× × × 0.954 0.400 0.474 0.699
× × × × 0.956 0.409 0.514 0.707

TABLE I
AREA UNDER THE CURVE IN EACH FIRE CATEGORY FOR EVERY

KEYPOINT COMBINATION. × INDICATES A KEYPOINTS TYPE USED FOR

REGISTRATION. BOLD SHOWS THE HIGHEST SCORE.

tative of local methods, this behavior is expected to regard
other local registration methods as well.

D. Comparison with state of the art

In this experiment, the accuracy of the registration frame-
work employing the combination of Bifurcations and SIFT is
compared to three state-of-the-art methods. The first method
is the previous iteration of the same framework [22], which
utilized SIFT keypoints. The other two methods are GDB-
ICP [23] and the original Harris-PIIFD framework [30].
These methods have been selected as both are widely applied
in the retinal image registration field. GDB-ICP is used
in [14], [18], [30], [36] and the original Harris-PIIFD frame-
work in [31], [29]. For GDB-ICP, the C++ implementation
provided by the authors3 was used. For the original Harris-
PIIFD framework, a MATLAB implementation was utilized.

Figure 3 and Table II show the result plot and the AUC,
respectively. The framework utilizing the proposed keypoint

3http://www.vision.cs.rpi.edu/gdbicp/exec/
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Fig. 2. Registration success for the following keypoint combinations: SIFT-Bifurcations, SIFT-PIIFD-Bifurcations and Bifurcations. The x axis marks
the registration error threshold under which a registration is considered to be successful. The y axis marks the percentage of successfully registered image
pairs for a given threshold.

Method S P A FIRE
H-M’17 0.958 0.542 0.660 0.773
H-M’16 [22] 0.945 0.443 0.577 0.721
Harris-PIIFD [30] 0.900 0.090 0.443 0.553
GDB-ICP [23] 0.814 0.303 0.303 0.576

TABLE II
AREA UNDER THE CURVE IN EACH FIRE CATEGORY FOR THE

FOLLOWING REGISTRATION METHODS: PROPOSED (H-M’17), PREVIOUS

ITERATION OF THE FRAMEWORK (H-M’16) [22], HARRIS-PIIFD [30]
AND GDB-ICP [23]. BOLD SHOWS THE HIGHEST SCORE.

combination outperforms the original Harris-PIIFD frame-
work [30] in every category, as well as the previous iteration
of the framework in almost every condition. The proposed
method outperforms GDB-ICP [23] except up to a certain
threshold in P .

IV. CONCLUSIONS

There exist several methods to extract corresponding key-
points in retinal images. The most popular ones are studied
in this work, to analyze their impact in the accuracy of
the retinal image registration framework proposed in [17],
[22]. The publicly available1 FIRE [34] dataset is used
in the experiments. When studying keypoints in isolation,
the framework provides the most accurate results when
employing Bifurcations, followed by SIFT. Overall, the best
registration results are obtained when the framework uses
a combination of these two keypoints, showing that the
combination of complementary keypoints allows for more
accurate registration than when utilized in isolation. Addi-
tionally, the registration framework with the proposed key-
point combination is shown to perform more accurately than
GDB-ICP and the original Harris-PIIFD framework, which
are widely employed retinal image registration methods. To
the best knowledge of the authors, retinal image registration
methods that are based on keypoint correspondences employ
a single type of keypoints. The registration framework used
in the experiments is considered to be representative of local
methods. Thus, the conclusion of combining certain types of
keypoints to improve registration accuracy is expected to be

useful towards improving other local registration methods,
too.
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