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REMPE: Registration of Retinal Images Through
Eye Modelling and Pose Estimation
Carlos Hernandez-Matas , Xenophon Zabulis , and Antonis A. Argyros

Abstract—Objective: In-vivo assessment of small ves-
sels can promote accurate diagnosis and monitoring of
diseases related to vasculopathy, such as hypertension
and diabetes. The eye provides a unique, open, and ac-
cessible window for directly imaging small vessels in the
retina with non-invasive techniques, such as fundoscopy.
In this context, accurate registration of retinal images is of
paramount importance in the comparison of vessel mea-
surements from original and follow-up examinations, which
is required for monitoring the disease and its treatment. At
the same time, retinal registration exhibits a range of chal-
lenges due to the curved shape of the retina and the mod-
ification of imaged tissue across examinations. Thereby,
the objective is to improve the state-of-the-art in the ac-
curacy of retinal image registration. Method: In this work,
a registration framework that simultaneously estimates eye
pose and shape is proposed. Corresponding points in the
retinal images are utilized to solve the registration as a 3D
pose estimation. Results: The proposed framework is eval-
uated quantitatively and shown to outperform state-of-the-
art methods in retinal image registration for fundoscopy
images. Conclusion: Retinal image registration methods
based on eye modelling allow to perform more accurate
registration than conventional methods. Significance: This
is the first method to perform retinal image registration
combined with eye modelling. The method improves the
state-of-the-art in accuracy of retinal registration for fun-
doscopy images, quantitatively evaluated in benchmark
datasets annotated with ground truth. The implementation
of registration method has been made publicly available.

Index Terms—Image registration, medical image
registration, medical imaging, retinal image registration,
retinal imaging.

I. INTRODUCTION

SMALL vessels exist in all organs of the human body, but the
retina provides an easily accessible way to non-invasively
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estimate the microvascular status via fundoscopy [1]. This fa-
cilitates diagnosis and progression monitoring of diseases with
strong vasculopathy, such as hypertension [2] and diabetes [3].
The analysis of retinal structures is also important for the diag-
nosis of illnesses that affect the eyesight [1].

Diagnosis and disease monitoring is facilitated by accurate
retinal image registration. Image registration is applied upon
a pair of images, the reference (F0) and the test (Ft) one.
The goal is the warping of Ft so that corresponding points in
both images occur at the same 2D locations in the reference
frame ofF0. Retinal Image Registration (RIR) [4] is challenging
due to optical differences in various devices or modalities,
anatomical changes (i.e., due to retinopathy), and acquisition
artifacts. Viewpoint differences perplex image registration due to
projective distortions in the images. Another complexity arises
because of the curved shape of the retinal fundus which needs
to be accounted for accurate registration.

Medical applications of RIR can be classified according to
whether images are acquired during the same or in different
sessions. Images acquired during the same examination typically
lack significant anatomic changes. If the overlap in the pair of
images is significant, they can be combined into super resolved
images, i.e., images of higher resolution and definition [5]–[7]
that enable more accurate measurements of the vessel struc-
ture such as Arteriolar-to-Venular Ratio [8]. Images with little
overlapping surface can be utilized to create image mosaics that
present larger retinal areas [9]–[11].

Longitudinal studies of the retina [12], [13] can be performed
with registered images acquired at different points in time. These
studies allow to monitor health status and disease progression.
They provide an alternative method for the assessment of the
effectiveness of a treatment and patient response. While differ-
ences due to retinopathy such as hemorrhages can be clearly
identified without the assistance of additional tools, registration
may prove useful for detecting minute changes such as differ-
ences in vasculature width, which is relevant for the study of
hypertensive retinopathy.

This work proposes a novel RIR method. Compared to ex-
isting approaches, its novelty is that registration is achieved
by considering and jointly estimating the relative pose of the
cameras that acquired the images, as well as the parameters of
an ellipsoidal model of the eye. A preliminary version of this
method [14] presented fundamental image registration frame-
work, utilizing Speeded Up Robust Features (SURF) features,
Particle Swarm Optimization (PSO) and a fixed spherical model.
The work in [15] expanded this method by (i) adding the Random
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Sample Consensus (RANSAC) initialization and (ii) utilizing
Scale-Invariant Feature Transform (SIFT) instead of SURF
features. The work in [16] focused uniquely on substituting
the spherical model with ellipsoids to better approximate the
eye shape. In [17] we studied the impact of utilizing diverse
keypoints and their combinations. In this work we propose an
alternative initialization step to our approach. Moreover, we
present the world model geometry, as the basis of the pro-
posed method. Additionally, we provide a consolidated and
comprehensive presentation of all aspects of the proposed RIR
framework. This presentation is followed by an in depth ablation
analysis that is based on a publicly available and ground-truth
annotated dataset. Access to the executable of the proposed
method is also provided, in this submission.

II. RELATED WORK

Registration algorithms can be classified according to diverse
criteria, such as the the type of information used, how such
information is used, and which is the transformation model
employed to align the images [4].

RIR methods based on the frequency domain [18], [19] only
allow for 2D transformations. In the RIR case, spatial methods
seem to be a better alternative as they allow for more complex
transformations.

Within spatial methods, several utilize 2D transforma-
tions [20]–[29], or projective transformations [30], [31]. They
provide accurate registration results for images with narrow field
of view (FOV) or large overlap, but their performance decreases
for images with larger FOV, where the curvature of the eye
introduces distortion in the image.

Methods based on quadratic transformations are the ones
that can achieve the most accurate registration, as they have
the potential to approximate the 3D shape of the eye. Within
methods that use quadratic transformations, the ones utilizing
the whole image such as [32] are computationally expensive
due to the large amount of information used. Methods utilizing
localized features are typically faster to execute. SURF and
Partial Intensity Invariant Feature Descriptor (PIIFD) based
keypoints such as the ones used in [33]–[36] are shown [17]
to provide less accurate registration results than other keypoint
features such as SIFT [15]–[17] and vessel bifurcations [10],
[17], [37]–[39]. RIR registration methods typically do not utilize
simultaneously different types of features. A series of closely
related methods based on Iterative Closest Point (ICP) [40]–[42]
utilizing diverse features provide accurate registration results
when a good initialization is performed. However, the fact that
this step is based upon a single SIFT keypoint match proves to
be a weakness in challenging image pairs [16].

Methods that utilize second order polynomials for the trans-
formation, tend to obtain accurate registration for the overlap-
ping areas in the images. However, the transformation performed
in non-overlapping areas sometimes is not accurate. Such a
drawback could be overcome by utilizing a model approximating
the shape of an eye [15], [31]. State-of-the-art research efforts
orbit towards extending already existing approaches such as
RANSAC [43] or opening new approaches such as introducing

Fig. 1. Image acquisition and registration following the geometry pre-
sented in [16].

novel local descriptors for retinal images such as the D-Saddle
feature [44] or leveraging the radial distortion of images [45].
However, similarly to what happens in several other computer
vision domains, large efforts are targeted towards the utilization
of Deep Neural Networks [46]–[48]. In particular, the method
presented in [49] the Deep Step Patterns (DeepSPa) framework
uses a Convolutional Neural Network (CNN) to register mul-
timodal retinal images without the need for manually labelled
datasets for training or manual intervention, focusing on the
intensity change patterns rather than the intensity change values
of the images, and showing great potential for this direction on
the RIR field.

With respect to the aforementioned classifications, in this
work, we propose a local, spatial method that performs retinal
image registration by exploiting 3D eye models.

III. REMPE REGISTRATION FRAMEWORK

In fundoscopy, the camera typically has a fixed pose and a
headrest is utilized to stabilize and align the head in front of the
camera. Ideally, the eye is centered in front of the camera and
its rotation avails views of diverse retinal areas to the camera. In
this work, an equivalent geometry is considered: the reference
camera that acquires the reference image (F0) is fixed. Both
eye rotation and pose of the camera that acquires the test image
(Ft) are defined relative to the reference camera. The proposed
approach, named Registration through Eye Modelling and Pose
Estimation (REMPE), registers F0 and Ft by simultaneously
estimating the relative pose of the eye when the retinal images
were acquired, as well as the eye shape and rotation. Fig. 1
shows the aforementioned image acquisition and registration
geometry. Point correspondences between the images are uti-
lized to achieve this registration which is achieved by searching
for the 3D geometry of camera postures and eye shape that best
explain the 2D coordinates of matched points. An initial pose
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Fig. 2. Workflow of REMPE.

estimate is calculated utilizing RANSAC and a spherical eye
model. Subsequently, PSO is utilized to refine this pose, as well
as to estimate the lengths of the semi-axes of the ellipsoidal
eye model and their rotation. The workflow of the registration
framework is shown in Fig. 2.

A. Parameterization of Eye Shape and Camera Pose

The general shape of the eye can be represented via various
geometrical models. In this work, an ellipsoidal model {A, Q}
is utilized. Locating the coordinate origin at the center cs =
[0, 0, 0]T we obtain the ellipsoid equation

xTQTAQx = 1, (1)

where x is a point on the eye model surface E . This model has 3
orthogonal semi-axes [a, b, c] composing A as shown in Eq. (2)

A =

⎡
⎢⎣
a−2 0 0

0 b−2 0

0 0 c−2

⎤
⎥⎦ , (2)

and rotations Q = Ra(ra) ·Rb(rb) ·Rc(rc) of said semi-axes,
leading to E . A calibrated camera for F0 is located at cc =
[0, 0,−δ]T . Kc and Kt are the intrinsic camera matrices for
F0 and Ft.

A parameterization of eye shape and camera pose S in the
world model consists of relative camera pose {R, t} and el-
lipsoid model {A, Q}, thus S = {R, t,A, Q}, totalling 12
parameters. Relative camera pose {R, t} corresponds to the rel-
ative rotation R = Rx(rθ) ·Ry(rφ) ·Rz(rω) and translation
t = [tx ty tz]

T between the cameras.

B. World Model

The 3D “world” model of the scene and camera views is
composed by two virtual acquisition devices and the eye model
and can be represented by a few parameters: Lens to cornea
distance (l) and Field of view (k) are known from the device
specifications. Image radius, in pixels, (r), is availed by image
size. An initial, coarse estimate of the eye model is chosen as
per the Navarro eye model [50], that is a sphere (ρ = 12 mm).
Camera pixel spacing (p) is an intermediate variable that is
eventually simplified in Eq. (5).

Fig. 3. World geometry.

Focal distance is calculated as follows:

f = p r

l + ρ+ ρ cos

(
k

2

)

ρ sin

(
k

2

) . (3)

A geometric representation of the framework is shown in
Fig. 3. This geometry is central in this research, as it formulates
the transfer of a fundus image from its 2D form to the 3D world,
and guides its projection onto a 3D eye model and vice versa.

C. Intrinsic Camera Matrix

The intrinsic camera matrix K (Eq. (4)), together with the
extrinsic parameters {R, t} of the camera allow to project a 3D
point onto a camera view.

K =

⎡
⎢⎣
αx γ u0

0 αy v0

0 0 1

⎤
⎥⎦ (4)

In this work, lens distortion is assumed to be negligible. In
Eq. (4), αx and αy represent the focal length in pixels, γ is
the skew coefficient between the x and y axes and u0 and v0
represent the center of the image, in pixels. The values of αx

and αy are calculated from f in Eq. (3) as follows:

αx = αy =
f

p
= r

l + ρ+ ρ cos

(
k

2

)

ρ sin

(
k

2

) . (5)

D. Ray-Ellipsoid Intersection

Given S, the image locations are traced to 3D retinal locations
upon the surface E of the model {A, Q}. This is achieved by
considering the visual ray from eye center cs through image
keypoint u. Let point x be the intersection of this ray and E . The
3D coordinates of x are given by:

x = P+u+ λc, (6)

by solving the ray’s equation (see [51, p. 162]):

P+ = PT (PPT )−1 (7)

for λ, where c is the camera center and P the projection matrix.

E. Keypoint Correspondences

Keypoint detection and descriptor extraction methods have
been widely utilized to identify common points in a pair of
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images. In this work, several methods used for RIR have been
studied. A large set of RIR methods [15], [16], [31], [34], [41],
[42] have been based on SIFT features [52]. SURF features [53]
have also been employed [7], [14], [35], [36]. Harris-PIIFD [33]
is a method introduced with the purpose of finding keypoints in
cross-modal retinal image pairs. RIR methods employing PIIFD
are found in [33]–[35]. Vessel bifurcations, or Y-features, are
also commonly used in RIR [10], [17], [21], [24], [27], [37],
[40], [54]. In this work, bifurcations are extracted conventionally
as in [17].

Matching of features is performed with the conventional bi-
lateral method proposed by Lowe [52]. Only symmetric matches
are kept.

Diverse types of keypoints may predominantly occur in differ-
ent areas of an image, conveying complementary information for
registration. Feature combinations are expected to provide more
correspondences in complementary locations on the retina and,
in this way, reinforce the accuracy of results. Thus, in [17], we
studied all possible combinations of the four types of keypoints
in order to determine the one that performs best in terms of
registration accuracy.

If the input images are not grayscale, the keypoints are calcu-
lated on the green channel of the images, as it provides higher
contrast in retinal images than the blue and red channels [14].

F. Initialization

An initial candidate solution S0 is estimated by solving
the Perspective-n-Point (PnP) [55] problem. Two different ap-
proaches were considered: RANSAC [55] and Posest [56].

RANSAC enables outlier detection and was introduced as
a solution to the PnP problem. This method estimates the 3D
pose of an object given a set of 2D-3D correspondences and the
camera projection matrix P .

Posest [56] achieves model-based pose estimation of rigid
objects. It calculates an initial pose estimation using a PnP solver
embedded in a RANSAC framework and the redescending M-
estimator sample consensus (MSAC) cost function. Then, a non-
linear refinement of this pose is performed iteratively with the
Levenberg-Marquardt [57] algorithm.

Both methods rely on 2D-3D correspondences. As {A, Q}
are unknown, we utilize the spherical model and the calibration
of the cameras to retrieve the 3D location of the points based on
Eq. (6). If no initialization method is used, {R, t} is initialized
as {I, 0}.

G. Optimization

The estimation of S, is formulated as the solution of an
optimization problem. Given a hypothesis Sh with {Rh, th},
the keypoints of the image are traced to 3D locations on the eye
model surface as in Eq. (6). Points qi are the 3D locations on
E of keypoints from F0. Points pi,h are the 3D locations on E
of keypoints from Ft calculated from Sh (see Fig. 1). The 3D
distances of corresponding keypoints on E are:

di,h = |qi − pi,h|. (8)

The minimization of distancesdi,h form the basis of the objective
function o(·) to be minimized. To increase robustness to spurious
matches on o(·), a percentile of accumulated distances di,h is
used:

o(Sh) =
∑
j

dj,h, (9)

where j enumerates the smallest 80% values of di,h.

H. Particle Swarm Optimization (PSO)

The 12D space of hypotheses around a initial solution S =
{R, t,A, Q} is denoted as:

[γθ, γφ, γω, μx, μy, μz, μa, μb, μc, γa, γb, γc], (10)

for parameters

[rθ, rφ, rω, tx, ty, tz, a, b, c, ra, rb, rc], (11)

with rθ ∈ [−γθ/2, γθ/2] and correspondingly for the rest of
dimensions. A grid-based search of this space to optimize Eq. (9)
is computationally prohibitive. Besides, that would create a
discretized version of the problem. Thus, the objective function
of Eq. (9) is optimized via PSO [58], a stochastic, derivative-free
optimization method successfully employed for pose estimation
not only in this [14], [15] but also in other domains [59], [60].

PSO achieves optimization by iteratively improving a candi-
date solution given an objective function. The method utilizes
a set of p particles, or candidate solutions, that evolve through
g generations from an initial random position and velocity in a
multidimensional search-space.

PSO can be configured with few parameters. The objective
function to utilize is not required to have known derivatives, and
it can be discontinuous or even cross-modal [61]. The required
number of objective function evaluations (p · g) is relatively
low. These evaluations determine the computational budget of
the optimization [61]. Allocating a small budget entails the risk
of terminating the process prematurely, providing a poor pose
estimate. On the other hand, an overly large budget may lead
to additional computation without noticeable improvements in
accuracy. Selecting a budget requires proper balancing of the
trade-off between the accuracy and the speed of the method [61].
Given a particular budget, the final performance of the method
is impacted by how the p particles are distributed across g
generations.

I. Search Space Structure Variants

Aiming at accuracy and robustness, several method variants
were considered to explore the solution search space. These
variants consist of different PSO configurations with and without
RANSAC initialization:

1) Coarse (C): Baseline method described in Section III-H.
2) Coarse-to-Fine (CF): PSO is executed twice, with the

total budget split in half, and utilizing the same budget in
each execution. For the second execution, the search space is
a hypercube reduced in all 12 dimensions and centered at the
solution provided by the first execution.
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3) RANSAC (R): In this approach, {R0, t0} constitutes the
solution, i.e., the RANSAC-based initialization described in
Section III-F.

4) R-C: Coarse variant with RANSAC initialization.
5) R-F: Fine variant with RANSAC initialization. Similar to

variant R-C, but with reduced search space.
6) R-CF: Coarse-to-Fine with RANSAC initialization.
Thus, variants C and CF are initialized at {I, 0}. Variants R-C

and R-CF are identical to them, but initialized at {R0, t0}.
The search hypercube in Eq. (10) is set to

[4, 4, 4, 4, 4, 4, 8, 8, 8, 360, 360, 360] (12)

for coarse PSO processes, and to

[2, 2, 2, 2, 2, 2, 4, 4, 4, 180, 180, 180] (13)

for fine PSO processes. These values do not depend on the
type of images and their characteristics, and have been selected
empirically based on the analysis of typical scenarios for retinal
image acquisition. For coarse search, the limits are set more
broadly than a typical scene allows for, providing the whole
range of possible solutions and allowing to find a candidate in
the vicinity of the optimal solution. The parameters for the fine
search limit more drastically the search space, allowing a refined
search around the initial hypothesis. The results presented in
Section IV-F lead to selecting the variant R-F as the proposed
one.

J. Eye Model Variants

We consider four eye models that approximate either the full
shape of the eye, or part of it. All of them present a smooth
surface. In increasing order of complexity, these models are:

1) Plane: Baseline representation of the retinal surface by
a plane. While this may be appropriate for a reduced FOV, the
approximation deviates when images for large FOVs. [a, b, c] =
[10000, 10000, 1] and [ra, rb, rc] = [0, 0, 0].

2) Sphere: The spherical model consists of an ellipsoid
with equal axes that is invariant to rotations about them. Thus
[a, b, c] = [ρ, ρ, ρ] and [ra, rb, rc] = [0, 0, 0] and ρ = 12mm as
per [50].

3) Fixed Orientation Ellipsoid: A general ellipsoid of fixed
orientation so that its semi-axes a, b, c are parallel to axes
xx′, yy′ and zz′, respectively. Thus [a, b, c] = [ρa, ρb, ρc] and
[ra, rb, rc] = [0, 0, 0].

4) Ellipsoid: A general ellipsoid that may be rotated relative
to the camera coordinate system. Thus [a, b, c] = [ρa, ρb, ρc] and
[ra, rb, rc] = [θa, θb, θc].

The higher the complexity, the higher the potential of the
model to correctly approximate the eye shape and orientation,
thus leading to more accurate registration results. While most
retinal diseases do not severely affect the general eye shape, in
cases like acute age-related macula degeneration, where drusen
is accumulated under the retinal pigment epithelium, these
changes might be noticeable [1]. The proposed method currently
does not account for this behaviour, but it can be extended in that
direction by utilizing two eye models, one for each of the images
and simultaneously calculating their eye shape parameters.

K. Multiple Process Execution

Both RANSAC and PSO are of stochastic nature, so the pro-
posed method is non-deterministic. This can lead to suboptimal
results, as there exists the risk of entrapment in local minima.
Due to this, the process comprised by RANSAC and PSO is
executed s times, denoted as swarms, and the parameters that
give rise to the best score in the objective function minimization
are selected as the solution. Execution of multiple swarms leads
to an increase on the computational cost, but it makes suboptimal
solutions less probable to occur. Alternatives such as increasing
the PSO budget, are found in the experiments not to be as
effective in avoiding these local minima entrapment.

L. Data Output and Image Formation

Data can be output in several ways. When the solution S
is chosen, Eq. (6) is utilized to estimate the locations of the
pixels from Ft on the surface E of the eye model. This allows to
output the 3D coordinates and the color for each of the points,
generating a 3D model of the retinal eye shape.

These locations are projected to the reference camera utilizing
the projection matrixP . This allows to output a list of points with
the 2D floating point locations and the color data of the points.
Such data are useful for generating Super Resolution (SR)
images when combined with similar data from other registered
images from the same eye.

Finally, 2D floating point and color information is utilized to
create an image utilizing bilinear interpolation, which is then
output as an image file. Additionally, S is stored, allowing to
recreate the output data.

IV. EXPERIMENTS

The goal of the experiments is twofold. The first goal is to
investigate how to configure all the elements from the REMPE
framework to form an accurate and robust RIR method. Such
experiments include investigating the appropriate keypoints,
eye model, search space structure variant and PSO budget
distribution. The second goal is to perform a quantitative and
comparative evaluation of the proposed approach to state of the
art methods in RIR.

While no explicit comparison is performed with previous
versions of the REMPE method [14]–[17], each of their config-
urations are included in the evaluation of the different elements
presented in the experiments in this section.

A. Experimental Setup

Experiments were run in an Intel Core i7-4770 CPU @
3.40 GHz with 16 GB of RAM memory and a NVIDIA GeForce
GT 730 on Windows 7 Professional. The proposed RIR frame-
work was implemented in C++ with openCV and CUDA tools.

The best trade-off between computational cost and accuracy
is achieved when utilizing the following configuration: Infor-
mation is retrieved from the image pairs using a combination of
SIFT and vessel bifurcations. Solution S is calculated with s = 3
independent swarms consisting on a RANSAC initialization
using the spherical eye model, followed by a fine PSO search
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Fig. 4. Workflow of the proposed registration method.

utilizing the ellipsoidal eye model. The fine PSO search is
performed on a cube with the dimensions indicated in Eq. (12).
For each PSO process, a budget p/g = 10 k/300, is used.
This configuration is utilized throughout the experiments, unless
otherwise noted. A diagram of the method is shown in Fig. 4.

B. Dataset

The Fundus Image Registration (FIRE) dataset [62] is used
for the experiments. It consists of a collection of 134 image pairs
split into 3 categories according to image pairs characteristics.
Category S contains 71 image pairs with high overlap and no
anatomical changes. Category P contains 49 image pairs with
small overlap and no anatomical changes. Category A contains
14 image pairs with high overlap and large anatomical changes.

C. Registration Evaluation

Evaluation of the registration accuracy is performed as in [62].
More specifically, the registration error in pixels for each image
pair is calculated as the average error on 10 correspondences,
distributed over the part of the retina that is commonly visible
in the images to be registered. These correspondences, provided
by [62], were manually selected by an expert and mainly consist
on vessel bifurcations and vessel crossings, further refined using
correlation of the images patches around them to diminish any
possible bias effect due to human annotation. Results are shown
using a 2D plot in which the x axis indicates an error threshold.
If the error in registration accuracy of an image pair is below
this threshold, the registration is considered as successful. The
y axis of the plot corresponds to the percentage of successfully
registered image pairs for a given threshold. This way, the
accuracy of a method is monitored over a wide range of target
registration accuracy and not based on an arbitrarily selected
threshold. This measure facilitates the fair comparison of RIR
methods, allowing a registration method to be selected based
on the accuracy requirements of the intended application. We
use such plots to show registration accuracy for each individual
category, as well as for the whole FIRE dataset. Additionally,
the Area Under Curve (AUC) is provided.

D. Keypoint Selection

We compare the impact of the keypoints described in Sec-
tion III-E on the accuracy of the proposed RIR framework.
We computed the AUC for every feature combination when

TABLE I
PERCENTAGE OF AUC IN EACH FIRE CATEGORY FOR KEY KEYPOINT

COMBINATIONS. × INDICATES A KEYPOINTS TYPE USED FOR
REGISTRATION. THE RESULTS OF THE EXPERIMENTS FOR ALL

COMBINATIONS CAN BE FOUND IN [17]

TABLE II
AVERAGE REGISTRATION ERROR ON SYNTHETIC IMAGES FOR RANSAC

AND POSEST

registering the FIRE dataset [62]. The results (see Fig. 5 in [17])
show that the combination of SIFT features and Bifurcations
provides the most accurate registration results. This is because
keypoints that provide complementary information increase the
accuracy of the approach. Bifurcations are interest points located
on the vessels, which provide information about the retinal
structures of the image. SIFT responds to more generic interest
points that are not located necessarily along retinal vessels.

E. Initialization

Two experiments aim to compare the performance of
RANSAC [55] and Posest [56] as initialization strategies. For
both methods, the spherical eye model is used for registration, as
2D-3D correspondences are required, and the spherical model
is the most complex model for which {A,Q} is known.

In the first experiment, registration has been performed on
two sets of 10 synthetic retinal images, each. One set was
generated assuming a spherical eye, and the other on ellipsoid
eyes with arbitrary rotation. For each image pair, three sets of
correspondences were created. The GT set contains 500 pairs of
perfect correspondences to be used as ground truth to measure
registration error. The Ideal (I) set contains another 500 pairs of
perfect correspondences, different than those in GT, to be used
as keypoints for registration. Finally, the Noisy (N) set involves
the correspondences in I, contaminated with uniform noise in the
range [−25, 25]pixels that has been added to feature coordinates.
Error has been measured by calculating the average distance of
the corresponding ground truth points in each image pair after
registration, in pixels, and then the average error over the whole
set of image pairs.

The obtained results are shown in Table II. It can be verified
that the performance of RANSAC and Posest is comparable
when ideal data are employed, regardless of the actual eye shape.
However, RANSAC performs considerably better in the case
of noisy observations. This is explained as follows. RANSAC
is a purely randomized search algorithm. As such, it explores
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Fig. 5. Registration success for RANSAC and posest with a spherical model. The x axis marks, in pixels, the registration error threshold under
which a registration is considered to be successful. The y axis marks the percentage of successfully registered image pairs for a given threshold.

Fig. 6. Registration success for for the 6 search space variants. The x axis marks, in pixels, the registration error threshold under which a
registration is considered to be successful. The y axis marks the percentage of successfully registered image pairs for a given threshold.

TABLE III
PERCENTAGE OF AUC FROM FIG. 5 IN EACH FIRE CATEGORY FOR

RANSAC AND POSEST WITH A SPHERICAL MODEL

solutions in a data driven manner and is less susceptible to getting
trapped in local minima. On the other hand, Posest performs a
gradient-descent based error minimization in the vicinity of the
solution with which it is initialized. Therefore it is easier to get
trapped in local minima, in case of error functions that are not
smooth and unimodal. The error in the correspondences in the N
set affect the smoothness of the error function and leads Posest
to suboptimal solutions compared to RANSAC.

The above findings are confirmed also by the second ex-
periment which analyzes the performance of the considered
initialization methods on the FIRE dataset. Table III and Fig. 5
show that the performance of the two methods is similar, with
the largest difference being in A. As presented earlier, this
subset contains image pairs acquired at temporally displaced
examinations. They feature visual anatomical differences due
to the progression or remission of retinopathy. This affects the
positioning of the image features over the eye surface, and

consequently, the smoothness of the error function. Therefore,
RANSAC outperforms Posest.

Given these results, RANSAC was selected to provide an
initial solution to the PSO-based optimization technique.

F. Search Space Variant Comparison

This experiment has the objective of identifying the most
adequate RANSAC and PSO combination for estimating the so-
lution S to the registration. The variants described in Section III-I
are compared. Variants C, R-C and R-F run p/g of 10 k/300 in
a single PSO stage. Variants CF and R-CF run 10 k/150 in each
of their two PSO stages. Thus, all variants, except R, have the
same budget.

Table IV shows that among variants without RANSAC initial-
ization (C and CF), variant CF offers the best result. It demon-
strates that performing an initial coarse search to obtain a rough
estimate and refining it afterwards provides the most accurate
results. Standalone RANSAC (R) is shown to underperform in
almost every condition.

Variants that utilize RANSAC initialization (R-C, R-F and
R-CF) outperform their counterparts without initialization. In
general, R-F outperforms its competitors, with the largest dif-
ference being in A. This experiment shows that with a good
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Fig. 7. Registration success for for the four eye model variants. The x axis marks, in pixels, the registration error threshold under which a
registration is considered to be successful. The y axis marks the percentage of successfully registered image pairs for a given threshold.

TABLE IV
PERCENTAGE OF AUC FROM FIG. 6 IN EACH FIRE CATEGORY FOR THE 6

VARIANTS FOR SEARCH SPACE EXPLORATION. BOLD SHOWS
THE HIGHEST SCORE

TABLE V
PERCENTAGE OF AUC FROM FIG. 7 IN EACH FIRE CATEGORY FOR THE

FOUR EYE MODEL VARIANTS. BOLD SHOWS THE HIGHEST SCORE

initialization, focusing the budget around the initial estimation
provides the most accurate solution.

G. Eye Model Variant Comparison

This experiment compares the four variants proposed in
Section III-J so as to identify which performs best in terms of
registration accuracy. Results are shown in Table V and Fig. 7. In
all cases, the ellipsoid is shown to outperform the other variants
in the majority of image pairs. It is shown that the registration
accuracy increases along with the degrees of freedom. This is
the case for all three FIRE subsets and it is attributed to the better
approximation of the retina’s shape and pose. This experiment
proves that independently from the characteristics of an image
pair, a model that is able to better approximate the actual shape
of the eye assists in performing more accurate registration.

H. Impact of PSO Budget

We investigate how key PSO parameters impact the accuracy
and performance of the RIR method. Different combinations
of p/g can provide the same computational budget, but the

solutions they reach may differ considerably. The performance
of budgets ranging from 1000 to 9 million particles per swarm
is studied. Each of these budgets is distributed across 200, 250,
300, 350 and 400 generations.

The results of these experiments are shown in Fig. 8. Note
that the x axis is logarithmic. For a given budget, distributing it
across 300 generations provides the most accurate results. For
budgets larger than 3 million particles, the framework reaches
asymptotic results, meaning that an increase in budget, barely
improves the registration accuracy. Given these results, a budget
p/g of 10 k/300 appears to be the best choice. The chosen budget
is high compared to budgets used in other domains [59], [61].
This is due to the fact that retinal images provide a very limited
view of the surface of the retina. Variations on the shape of the
eye model have a large impact towards the edges of the image
and small towards the center. As such, large variations in the
locations of the particles may yield small differences on the
observed retinal surface, requiring a high amount of particles to
perform an accurate estimation.

I. Multiple Swarms

This experiment evaluates the effect of executing the
RANSAC and PSO processes several parallel times, to palliate
the non-deterministic effect of the registration framework. The
framework is executed 10 times, with each execution having a
different s ranging from 1 to 10 swarms.

Table VI shows the AUC for every execution when registering
the FIRE dataset. Fig. 9 shows the result for the execution with
odd s, for clarity purposes. The results show that while the
registration framework is non-deterministic, the variability in
the registration accuracy when executing the framework with
diverse s is small. For the registration method in this work, s = 3
is selected, as it provides the best robustness/computational
performance trade-off.

J. Comparison With State of the Art RIR Methods

We compared the accuracy of the registration method with
several other existing approaches. The list of methods is shown
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Fig. 8. Budget study on registration success. y axis represents AUC for a given budget. Note that while the full range for y axis is from 0 to 1, here
it is zoomed in. x axis indicates the total budget used in the registration, in logarithmic scale.

Fig. 9. Registration success for an increasing amount of swarms. The x axis marks, in pixels, the registration error threshold under which a
registration is considered to be successful. The y axis marks the percentage of successfully registered image pairs for a given threshold.

TABLE VI
PERCENTAGE OF AREA UNDER THE CURVE (AUC) IN FIG. 9 IN EACH FIRE
CATEGORY FOR AN INCREASING NUMBER OF INDEPENDENT SWARMS. BOLD

SHOWS THE HIGHEST SCORE

TABLE VII
COMPETING REGISTRATION METHODS USED FOR COMPARISON, IN

CHRONOLOGICAL ORDER

in Table VII. Experiments for Generalized Dual Bootstrap-
Iterative Closest Point (GDB-ICP) [41] and Harris-PIIFD frame-
work [33]. have been performed by the authors. For GDB-ICP,
the C++ implementation provided by the authors1 was used. For
the original Harris-PIIFD framework, a MATLAB implemen-
tation was utilized. For the remaining methods, such as Ves-
sel Optimal Transport for fundUS image alignment (VOTUS)
and Gaussian Field Estimator with Manifold Regularization
(GFEMR) the shown results are taken from [63], where experi-
ments were conducted with the same dataset and methodology
as in this manuscript.

Fig. 10 shows the result plot for the experiments performed
by the authors, and Table VIII show the AUC for all methods.
The proposed framework outperforms most of the compet-
ing methods, with the closest competitors being VOTUS and
GFEMR. When compared to GFEMR, the proposed method
outperforms in S and A, but slightly underperforms in P . The
proposed method slightly outperforms VOTUS in S and slightly
underperforms in A, but clearly underperforms in P . Overall,
the proposed method is closer to the current leading method than
to its trailing one.

K. Execution Time

This experiment aims to compare the proposed framework
with GDB-ICP [41] and the original Harris-PIIFD frame-
work [33] in terms of execution time. It also studies the execution

1http://www.vision.cs.rpi.edu/gdbicp/exec/
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Fig. 10. Registration success for the proposed method, Harris-PIIFD and GDB-ICP. The x axis marks, in pixels, the registration error threshold
under which a registration is considered to be successful. The y axis marks the percentage of successfully registered image pairs for a given
threshold.

TABLE VIII
PERCENTAGE OF AUC IN EACH FIRE CATEGORY FOR THE PROPOSED

METHOD, AND OTHER STATE-OF-THE-ART METHODS. BOLD SHOWS THE
HIGHEST SCORE, ITALICS SHOW THE SECOND BEST RESULT. RESULTS FOR
THE PROPOSED METHOD, HARRIS-PIIFD AND GDB-ICP CALCULATED BY

THE AUTHORS FROM FIG. 10, REST ARE EXTRACTED FROM [63]

TABLE IX
AVERAGE REGISTRATION TIME PER IMAGE PAIR, IN SECONDS, FOR THE

PROPOSED METHOD, HARRIS-PIIFD AND GDB-ICP

times of diverse parts of the proposed algorithm to identify
potential bottlenecks.

Table IX shows average registration time per image pair, in
seconds, for the proposed method, Harris-PIIFD and GDB-ICP.
While Harris-PIIFD is the fastest performing method of the
three, in Section IV-J it was shown that its accuracy is poor
compared to competing methods. Second fastest method is
GDB-ICP. Finally, the slowest method is the proposed one. The
proposed method has been timed with the PSO stage running on
GPU, an option that is not available in the used implementations
of the competing methods.

Table X shows average time required for each of the stages of
the proposed method to perform registration for an image pair.
The fastest stage is RANSAC, with each execution taking less
than 1 second, followed by the PSO process, which has been
implemented utilizing GPU acceleration. There exist apparent
bottlenecks in the keypoint extraction and matching, and the

TABLE X
AVERAGE PROCESS TIME FOR DIVERSE STAGES OF THE

PROPOSED METHOD

image formation stages, for which no parallelization has been
implemented. Keypoint extraction is particularly slow due to the
bifurcation extraction, as it requires to perform vessel segmenta-
tion. Image formation is slow due to the tracing of image points
of Ft from the test camera location to the eye model surface E ,
and their projection back to the reference camera location.

While the proposed method is slower than competing meth-
ods, it provides more accurate registration and the execution
time is not prohibitively large for being used in an examination
session. Bottlenecks on the bifurcation extraction, as well as the
image formation, have been identified, and will be addressed in
future work.

L. Qualitative Results

In this section, qualitative results of REMPE in the 3 cate-
gories of the FIRE dataset are presented. Fig. 11 shows regis-
tration results for 6 image pairs of the FIRE [62] dataset. Image
pairs from the top row correspond to category S , so they contain
no anatomical differences and have large overlapping surface.
Image pairs from the middle row are extracted from P , so they
contain no anatomical differences, but present small overlap.
Image pairs from the bottom row belong to category A, so
there exist anatomical differences within each image pair, but
the overlap is large.

These results show that the proposed RIR method performs
accurate registration for image pairs for varying degrees of
overlap, and with or without anatomical differences. This is
an important tool for clinicians, as it may facilitate visual
analysis of image pairs to detect retinal changes such as early
arteriolosclerosis, which is important for early diagnosis of
hypertension.
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Fig. 11. Registration results for the FIRE dataset. Top row shows
registration for image pairs from category S, mid row for category P and
bottom row for category A. Original registered images had a resolution
of 2912× 2912. Results displayed in a checkerboard mosaic, alternating
patches from both images. Images in the figure have high resolution,
allowing to zoom in to study them in detail.

V. CONCLUSION

A RIR framework for fundus images is proposed. The frame-
work, which is publicly available,2 is based on the simultaneous
estimation of the relative 3D pose of the cameras that acquired
the retinal images to be registered and the parameters and the
orientation of an ellipsoidal model of the eye. To perform this,
we rely on SIFT and bifurcation matches, as combining these
types of features provides increased accuracy. Keypoints are em-
ployed with a spherical eye model to perform an initial camera
pose estimation using RANSAC, which proves to provide more
accurate results than Posest. The pose is subsequently refined by
utilizing PSO with an ellipsoidal model of the eye for which the
parameters are also estimated. Utilizing an accurate eye model
for the registration allows for more accurate registration than
alternative polynomial transformations.

The performed experimental evaluation validates the pro-
posed method using the publicly available3 FIRE dataset. Re-
garding eye models, an ellipsoid, which has the potential to
approximate the actual shape of the eye more accurately than

2[Online]. Available: http://www.ics.forth.gr/cvrl/rempe
3[Online]. Available: http://www.ics.forth.gr/cvrl/fire

alternative models such as a sphere or a plane is also shown
to improve accuracy. Finally, experiments show the proposed
method to be more accurate and robust than most of the state-
of-the-art methods it was compared with, while being able to
compete head to head with VOTUS, which is currently the best
performing method.

Two important elements of this work is the introduction of the
world model and the investigation of an alternative initialization
step. The world model is the cornerstone of the geometrical part
of the proposed method, upon which the rest of the techniques
build to achieve retinal image registration. The consideration of
Posest as an alternative initialization step, while conceptually
promising, did not give the expected results during its experi-
mental evaluation. Therefore, its selection over RANSAC is not
justified. Finally, by making available the code implementing
the REMPE method to the scientific community, we facilitate
further experimentation and its application in real environments.
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