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Background and Objective : The study of small vessels allows for the analysis and diagnosis of diseases with 

strong vasculopathy. This type of vessels can be observed non-invasively in the retina via fundoscopy. The 

analysis of these vessels can be facilitated by applications built upon Retinal Image Registration (RIR), 

such as mosaicing, Super Resolution (SR) or eye shape estimation. RIR is challenging due to possible 

changes in the retina across time, the utilization of diverse acquisition devices with varying properties, 

or the curved shape of the retina. 

Methods : We employ the Retinal Image Registration through Eye Modelling and Pose Estimation (REMPE) 

framework, which simultaneously estimates the cameras’ relative poses, as well as eye shape and orien- 

tation to develop RIR applications and to study their effectiveness. 

Results : We assess quantitatively the suitability of the REMPE framework towards achieving SR and eye 

shape estimation. Additionally, we provide indicative results demonstrating qualitatively its usefulness in 

the context of longitudinal studies, mosaicing, and multiple image registration. Besides the improvement 

over registration accuracy, demonstrated via registration applications, the most important novelty pre- 

sented in this work is the eye shape estimation and the generation of 3D point meshes. This has the 

potential for allowing clinicians to perform measurements on 3D representations of the eye, instead of 

doing so in 2D images that contain distortions induced because of the projection on the image space. 

Conclusions : RIR is very effective in supporting applications such as SR, eye shape estimation, longitudi- 

nal studies, mosaicing and multiple image registration. Its improved registration accuracy compared to 

the state of the art translates directly in improved performance when supporting the aforementioned 

applications. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Diseases with strong vasculopathy, like hypertension [1] and di- 

betes [2] can be diagnosed and monitored through the analysis 

f small vessels. Such analyses can be performed in the retina, as 

t provides an easy and non-invasive way to assess the microvas- 

ular status via fundoscopy [3] . Additionally, the diagnosis of ill- 

esses that affect the eyesight, like glaucoma, age-related macu- 

ar degeneration or macular edema [3] can be performed via the 

tudy of retinal structures. Images of the retina can typically be ac- 

uired utilizing fundus cameras, or Optical Coherence Tomography 

OCT) [3] devices. 

Depending on the task at hand, analysing retinal images can be 

ased by Retinal Image Registration (RIR) [4] . Image registration is 
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 technique in which, given a pair consisting of a test and a ref- 

rence image, the test image is transformed so that its points are 

o-located with the corresponding points in the reference image. 

he images in the pair can differ with respect to their viewpoint, 

cquisition time and acquisition device. 

RIR can be utilized as a stepping stone for developing several 

pplications that aim to facilitate the analysis of the retina by 

linicians. Such applications range from increasing the retinal area 

isplayed by an image, to enhancing the quality of the picture, 

stimating geometrical characteristics and even tracking changes 

cross time such as the thinning of blood vessels. Traditionally, 

IR has been employed mostly to perform image mosaicing [5–7] . 

his practice consists of aligning retinal images from different parts 

f the retina to create a single representation corresponding to a 

ider field of view (FOV). Typically, mosaicing is performed with 

mages with a small overlap that are acquired during the same ex- 
mination session. Most of the old fundus cameras have a narrow 

https://doi.org/10.1016/j.cmpb.2020.105900
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2020.105900&domain=pdf
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Fig. 1. The geometry of image acquisition and registration in REMPE. 

Fig. 2. Workflow of the REMPE framework. 
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OV, therefore mosaicing is very important for studying properly 

he retina. 

The main purpose of registering retinal images from different 

ime periods is to perform longitudinal studies, allowing to moni- 

or the evolution of retinopathy in the patient [8–10] . This can be 

sed both to track the usefulness of a treatment (to be able to see 

f and how fast the patient recovers), as well as to follow the evo-

ution of the sickness in untreated patients. Ways to do this would 

e to compare variations in vessel diameter at the same anatomi- 

al points, to observe the growth of cotton-wool spots or to analyse 

he increase of vessel tortuosity. 

Multi-frame Super Resolution (SR) methods utilize multiple im- 

ges of the same scene acquired from slightly different viewpoints 

o produce an image of higher resolution and definition [11–14] . 

n fundoscopy, imaging the retina from slightly different perspec- 

ives, even when attempting to image the same surface, is inherent 

ue to saccadic motion. Image registration constitutes the basis of 

R methods because it enables the utilization of pixel values from 

ifferent images as additional samples at a certain location. 

Registered retinal images can be used to perform 3D re- 

onstructions of the retinal surface [15–18] and/or its vessel 

rees [19,20] . As with SR, these reconstructions and estimations can 

ssist clinicians in the form of more precise measurements of di- 

erse elements in the retina. 

In this work, our goal is to show quantitatively the suitabil- 

ty of the Registration through Eye Modelling and Pose Estimation 

REMPE) [21,22] framework when applied to SR and eye shape es- 

imation. Additionally, we provide indicative results demonstrating 

hat its utilization for longitudinal studies, mosaicing, and multiple 

mage registration is also a possibility. An extensive evaluation of 

he accuracy and reliability of the registration framework is pro- 

ided in [21,22] . 

. Experimental setup 

In the experiments carried out within this work, the 

EMPE [21,22] framework is utilized for performing RIR on retinal 

mage pairs on a variety of datasets. 

.1. The REMPE framework 

The REMPE framework [21,22] , which is publicly available 1 is 

ased on the simultaneous estimation of the relative 3D pose of 

he cameras that acquired the retinal images to be registered, as 

ell as the shape and orientation of an ellipsoidal model of the 

ye. Fig. 1 shows the image acquisition and registration geometry 

n REMPE. An overview of the REMPE workflow is shown in Fig. 2 .

To perform retinal image registration, we rely on Scale-Invariant 

eature Transform (SIFT) and bifurcation matches, as combining 

hese types of features provides increased accuracy [23] . Bifurca- 

ions provide keypoints located in the blood vessels of the retina, 

hile SIFT allows to find and match keypoints in the optic disc, the 

ovea, in areas with other features, such as haemorrhages or cot- 

on wool spots, as well as in the vessels themselves. Keypoints are 

rojected onto a spherical eye model to perform an initial camera 

ose estimation using Random Sample Consensus (RANSAC) [24] . 

The ellipsoidal shape of the eye is represented as { A , Q } , with

 

T Q 

T AQx = 1 , where x is a point on the eye model surface. Ellip-

oid A is represented with 3 orthogonal semi-axes as 

 = 

[ 

a −2 0 0 

0 b −2 0 

0 0 c −2 

] 

, (1) 

nd rotations Q = R a (r a ) · R (r ) · R c (r c ) of said semi-axes. 
b b 

1 https://projects.ics.forth.gr/cvrl/rempe/ t

2 
The projection of the keypoints to the spherical model is 

chieved by considering the visual ray from eye center c s through 

mage keypoint u . Let point x be the intersection of this ray with 

he image plane. The 3D coordinates of x are given by x = P + u +
c by solving the ray’s equation P + = P T (P P T ) −1 (see [25, p. 162] )

or λ, where c is the camera center and P the projection matrix. 

The pose is subsequently refined by utilizing Particle Swarm 

ptimization (PSO) with an ellipsoidal model of the eye for which 

he shape and orientation parameters are also estimated [26] . PSO 

s a method that utilizes a number of particles randomly dis- 

ributed across the problem’s search space, that evolve through it- 

rations converging towards the location of the particle that pro- 

ided the best solution up to the current generation. PSO is a 

tochastic derivative-free method that prevents discretization of 

he problem, thus allowing for more accurate solutions. Moreover, 

t requires the configuration of very few parameters and has been 

hown to perform remarkably well even in high-dimensional opti- 

ization spaces. 

The time complexity of the algorithm that utilizes i swarms, p

articles, g generations and k keypoints is O (i · p · g · k ) . This large 

omputational complexity, caused mainly due to the utilization of 

SO, is alleviated in practice due its high speed CUDA implemen- 

ation. 

.2. Datasets 

Six different datasets, each of them with diverse characteris- 

ics regarding image resolution, FOV and color modes (grayscale 

https://projects.ics.forth.gr/cvrl/rempe/
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Table 1 

SNR for SR comparison in SR 1. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 56.568 56.515 55.973 56.515 

GDB-ICP [31] 55.420 55.257 54.507 55.256 

Harris-PIIFD [6] 39.385 39.308 33.827 39.307 

Table 2 

PSNR for SR comparison in SR 1. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 2.960 2.942 2.373 2.942 

GDB-ICP [31] 2.526 2.454 1.792 2.453 

Harris-PIIFD [6] −4.862 −4.893 −7.003 −4.894 

Table 3 

SSIM for SR comparison in SR 1. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 0.932 0.930 0.930 0.930 

GDB-ICP [31] 0.930 0.929 0.929 0.929 

Harris-PIIFD [6] 0.881 0.879 0.859 0.879 

Table 4 

MSE for SR comparison in SR 1. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 189.658 190.009 201.124 190.004 

GDB-ICP [31] 198.072 199.516 213.162 199.528 

Harris-PIIFD [6] 414.664 415.958 513.653 415.985 

Table 5 

SNR for SR comparison in SR 2. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 100.299 98.622 99.260 101.252 

GDB-ICP [31] 83.167 84.056 78.988 84.892 

Harris-PIIFD [6] −8.240 −8.423 −8.261 −8.394 

Table 6 

PSNR for SR comparison in SR 2. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 10.684 9.876 10.164 11.177 

GDB-ICP [31] 2.247 2.710 0.122 3.120 

Harris-PIIFD [6] −28.285 −28.314 −28.307 −28.303 

Table 7 

SSIM for SR comparison in SR 2. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 0.956 0.960 0.956 0.969 

GDB-ICP [31] 0.795 0.817 0.784 0.816 

Harris-PIIFD [6] 0.636 0.626 0.634 0.626 

d

a

m

m

t

a

I

r color) have been utilized in the experiments presented in this 

ork. 

• The Fundus Image Registration (FIRE) [27] dataset 2 : Consists of 

a collection of 129 color retinal images forming 134 image pairs 

that have been classified into 3 categories depending on the 

session on which they were taken and the absence or presence 

of anatomical differences. Ground truth for registration is pro- 

vided. 
• The RODREP [28] dataset: Provides a large amount of images 

retrieved following a screening program in which for 140 eyes, 

2 sets of 4 color pictures are acquired. In these sets of 4 im- 

ages, there is very limited overlap, as the purpose is to gener- 

ate image mosaics. There are no image pairs with anatomical 

differences and no ground truth is provided. 
• The e-ophtha [29] dataset: Provides 144 color image pairs, both 

with large and small overlaps of the retina. Similarly to RODREP, 

there are no image pairs with anatomical differences and no 

ground truth is provided. 
• The VARIA [30] dataset: Provides 154 grayscale image pairs. The 

FOV of the images is small, all image pairs have a large overlap- 

ping area of the retina, and no ground truth is provided. Thus, 

this dataset is quite limited for the purpose of retinal image 

registration. 
• The SR 1 ( Super Resolution dataset 1 ): Consists of a subset of 9 

fundus images with large overlapping area extracted from the 

FIRE dataset. 
• The SR 2 ( Super Resolution dataset 2 ): Contains 9 grayscale im- 

ages obtained with a Heidelberg Scanning Laser Ophthalmo- 

scope (SLO). Images were provided by Dr. Maged Habib from 

the Sunderland Eye Infirmary, United Kingdom. 

.3. Experiments 

The suitability of utilizing REMPE in five applications of RIR is 

xplored. Experiments are divided into quantitative (for the cases 

f SR and eye shape estimation) and qualitative ones (for the cases 

f multiple image registration, longitudinal studies and mosaicing). 

. Quantitative experiments 

.1. Super resolution 

In this work, while we do not focus on the suitability of multi- 

rame SR for obtaining images of higher resolution and defini- 

ion, we demonstrate that the REMPE RIR framework leads to im- 

roved SR images when compared to using other, state-of-the-art 

IR methods. We have comparatively evaluated REMPE with Gen- 

ralized Dual Bootstrap-Iterative Closest Point (GDB-ICP) [31] and 

artial Intensity Invariant Feature Descriptor (PIIFD) on Harris cor- 

ers [6] . For SR, the MATLAB implementations 3 for the methods 

resented in [32] , [33] and [34] as well as interpolation of image 

oints were utilized. 

Multi-frame SR is quantitatively evaluated in relevant literature 

ith a range of metrics. In [35] both Structural Similarity (SSIM) 

nd Mean Square Error (MSE) are utilized. Peak Signal-to-Noise Ra- 

io (PSNR) is used in [36] . Signal-to-Noise Ratio (SNR) is employed 

n [37] . As these methods require to compare with a reference im- 

ge, the typical procedure is to reduce the size of the images to 

egister, so that the resulting SR image is of equal size to the orig- 

nal reference image. In this case, the images were resized to one 

hird of their original size and SR was performed with a scaling 

actor of 3. 
2 https://projects.ics.forth.gr/cvrl/fire/ 
3 http://lcav.epfl.ch/software/superresolution 

3

a

3 
Results for dataset SR 1 are shown in Tables 1–4 . Results for 

ataset SR 2 are shown in Tables 5–8 . These tables show that for 

 given SR method, results are best when utilizing the REMPE RIR 

ethod. This stems from the fact that REMPE performs registration 

ore accurately than the competing registration methods. 

Fig. 3 shows the reference images, and Fig. 4 shows detail of 

he results for SR 1 and SR 2 utilizing the SR method from Irani 

nd Peleg [32] . From left to right: reference image, REMPE, GDB- 

CP [31] and Harris-PIIFD [6] . 

.2. Eye shape estimation 

These experiments were performed to validate the eye shape 

s this is estimated by the registration framework. Modalities such 

https://projects.ics.forth.gr/cvrl/fire/
http://lcav.epfl.ch/software/superresolution
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Table 8 

MSE for SR comparison in SR 2. Bold shows the best score. 

Method [32] [33] [34] Interpolation 

REMPE 87.606 94.978 92.285 83.393 

GDB-ICP [31] 203.691 194.471 251.922 186.658 

Harris-PIIFD [6] 4314.5 4327.1 4324.2 4322.3 

Fig. 3. Reference images for SR 1 and SR 2. White square indicates detail shown in 

Fig. 4 . 

Table 9 

Error In the estimation of the lengths of eye axes in synthetic 

images. Error is indicated as the average of the percentage of 

the ground truth values. 

45 ◦ 100 ◦

8 DoF search 0.25% 0.06% 

9 DoF search 6.54% 0.52% 

a

a

u

e

s

g

a

p  

l

m

f

m  

t

a  

Fig. 5. 2D and 3D results of simultaneous registration of multiple images. 3D re- 

sults display a color pointcloud. 
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s OCT or Magnetic Resonance could provide ground truth for the 

ctual shape of a given eye. However, such data is unavailable to 

s. Instead, synthetic images with known ground truth were gen- 

rated. 

Two sets of synthetic images were generated utilizing an ellip- 

oidal eye model. The images were generated utilizing the same 

round truth but with different virtual cameras, with FOV of 45 ◦

nd 100 ◦, respectively. REMPE is utilized to estimate the relative 

ose of the cameras, as well as the lengths of the axes of the el-

ipsoidal eye model, but not the orientation of the ellipsoidal eye 

odel, which is provided to the framework. For both datasets, the 

ramework is run twice. In one run, all 9 parameters are esti- 

ated. In the other, one of the axes of the eye model is fixed to

he ground truth, so that only 8 parameters are estimated. Results 

re shown in Table 9 . When one of the axes of the eye model is
Fig. 4. Detail of SR results for SR 1 (top) and SR 2 (bottom). From left to

4 
nown, the framework is able to correctly estimate the parame- 

ers with high accuracy for both FOVs. However, when the three 

xes from the eye model are unknown, the framework is not able 

o estimate the axes of the ellipsoidal eye model for a FOV of 45 ◦.

hese results prove that with a wide field of view, the framework 

s able to perform 3D registration with an accurate estimation of 

he eye model. If the Navarro eye model [38] is utilized, where the 

ye axes measure 24 mm diametrically, that means an average er- 

or of 0.06 mm per axis. However, for 45 ◦, which is the FOV of

nterest in this work, the error grows to 0.78 mm per axis. 

This eye shape estimation error is seen in synthetic images that 

ere generated using an eye model with a smooth surface. In real 

mages, the retinal surface is irregular. The impact of this surface 

rregularity in the 3D keypoint localization and shape estimation 

eads us to believe that the error in the shape estimation will be 

arger in real images than in synthetic ones. Given the need of 

linicians for accurate measurements, we believe that at this stage 

f the research the performance of measurements using real dis- 

ances (i.e. mm) in the 3D estimated models is not yet accurate 

nough, but they show great potential. 
 right: reference image, REMPE, GDB-ICP [31] and Harris-PIIFD [6] . 
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Fig. 6. Longitudinal registration results for the FIRE dataset. The 2 images on the left show registration results for image pairs with no anatomical differences, while the 2 

images on the right show registration results for image pairs with anatomical differences. Results displayed in a checkerboard mosaic, alternating patches from both images, 

with the intent to show registration accuracy, not for analyzing anatomical differences in the registered images. 

Table 10 

Average registration time per image, in seconds [21] . 

Method REMPE GDB-ICP [31] Harris-PIIFD [6] 

Time (s) 198 73 11 
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A qualitative result of eye shape estimation performed on a set 

f 3 real images is shown in Fig. 5 and in video forms both in the

upplementary material and in YouTube. 4 

.3. Execution time 

This experiment compares the execution times of the REMPE 

ethod, with GDB-ICP [31] and Harris-PIIFD [6] , which are the 

ompeting methods utilized in Section 3.1 . Experiments were run 

n an Intel Core i7-4770 CPU @ 3.40 GHz with 16 GB of RAM 

emory and a NVIDIA GeForce GT 730. Results are presented in 

able 10 [21] . While REMPE is the slowest method, analysis from 

ection 3.1 shows that it provides more accurate registration than 

he alternatives. Additionally, it is not prohibitively large to be used 

n examination sessions. Moreover, as seen in Section 3.2 , REMPE 
4 https://youtu.be/zqXFfSZ4hNo 

f

f

q

Fig. 7. Mosaic registration results for the RODREP (top), e-ophtha (mid

5 
stimates the eye shape and generates a colored 3D point mesh, 

hile competing methods merely perform 2D-2D registration. 

. Qualitative experiments 

.1. Multiple image registration 

This experiment aims to demonstrate qualitatively that the 

EMPE RIR framework allows for the simultaneous registration of 

ultiple test images to a single reference image. While this can be 

erformed in 2D with multiple pairwise registrations of test im- 

ges to the reference image, this task is not trivial for the case 

n which eye shape estimation is also performed, as this requires 

 simultaneous 3D registration. The simultaneous registration pre- 

ented here demonstrates that REMPE allows for the combination 

f information from multiple images to perform a single registra- 

ion and eye shape estimation. Thus, it allows to estimate a single 

etinal surface and to register all images to it in 3D. 

Experiments have been performed utilizing images from the 

ODREP [28] dataset, which has been compiled with the purpose 

f performing registration of multiple images from the same eye 

or creating mosaics and, therefore, is the most suitable dataset 

or this purpose. Fig. 5 and the previous experiment’s video 4 show 

ualitative results for this type of multiple registration. 
dle) and VARIA (bottom) datasets. Figure interpretation in Fig. 6 . 

https://youtu.be/zqXFfSZ4hNo
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[

[

[

[

.2. Longitudinal studies 

These experiments evaluate the applicability of REMPE for sup- 

orting longitudinal studies. Fig. 6 shows registration results for 4 

mage pairs of the FIRE [27] dataset. The 2 images pairs on the 

eft contain no anatomical differences, while in the 2 image pairs 

n the right there exist anatomical differences within each image 

air. 

These results show that REMPE performs accurate registration 

or image pairs in which there may exist anatomical differences. 

his is an important tool for clinicians, as it may facilitate visual 

nalysis of image pairs to detect retinal changes such as early arte- 

iolosclerosis, which is important for early diagnosis of hyperten- 

ion. 

.3. Mosaicing 

These experiments show mosaicing results using REMPE for 9 

mage pairs from 3 of the employed datasets. Fig. 7 displays results 

or 3 image pairs from each of the RODREP [28] , e-ophtha [29] and

ARIA [30] datasets. 

These results show that the REMPE framework performs accu- 

ate registration for image pairs with a wide range of character- 

stics. Image pairs may present varying degrees of overlap, FOV, 

esolution and they may even be monochromatic. Mosaicing is an 

mportant tool for clinicians, so providing accurate mosaics is of 

tmost importance for a RIR framework. 

. Conclusion 

Applications with clinical purposes such as SR, eye shape esti- 

ation, longitudinal studies, mosaicing and multiple image regis- 

ration can be built on top of techniques that achieve retinal image 

egistration. The higher the accuracy of the registration, the better 

he end results for these applications. 

In this work, we demonstrated the suitability and the effec- 

iveness of REMPE [21,22] for such applications. REMPE is quan- 

itatively shown to outperform state-of-the-art methods when uti- 

ized to register images to be used with multi-frame SR methods. A 

tudy on eye shape estimation was also presented. We believe this 

as the potential to improve the measurements in which clinicians 

ase their diagnoses, opening the possibility to perform measure- 

ents on 3D representations of the eye, stead of doing so in 2D 

mages that contain distortions induced because of the projection 

n the image space. 

Additionally, its application for multi image registration, longi- 

udinal studies and mosaicing is indicated. Results in 2D and 3D 

or simultaneous registration of a triple of retinal images is shown. 

or longitudinal studies, qualitative results are shown both for im- 

ge pairs with and without anatomic differences. For mosaicing, 

ualitative results are shown for REMPE when registering images 

cross different publicly available datasets. 

Experiments have been performed over 6 different datasets, 

howing the flexibility of the REMPE framework to accomplish ac- 

urate RIR on images with very diverse characteristics. 
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