





#### Retinal Image Registration Based on Keypoint Correspondences, Spherical Eye Modeling and Camera Pose Estimation

Carlos Hernandez-Matas (1,2), Xenophon Zabulis (1), Antonis A. Argyros (1,2)

1 Institute of Computer Science – FORTH

2 Computer Science Department – University of Crete

EMBC 2015, Milan, Italy







#### Retinal Image Registration

Transforming images into **a single** coordinate system.

Warping an image to be placed **on top of another**, so that **overlapping pixel**s image **the same physical point**.

#### Small overlap

• Mosaicing and stitching

#### Large overlap

 Comparative analysis, images of higher resolution and definition





Small overlap [Can 2002]

*Large overlap* [Hernandez-Matas 2014]







#### Proposed Method

- Employs a 3D approach to registration:
  - spherical eye model
  - treat registration as a model-based, 3D pose estimation problem
- An objective function, based on distances of corresponding keypoints in the registered images is optimized to find the solution.
- Particle Swarm Optimization (PSO) [Poli 2007] is employed
  - parallelizable due to independent particles
  - No derivatives







#### Keypoint Correspondences









## Spherical Eye Model

Known system geometry (model-based)

3D eye model [Navarro 1985] allows treating as 3D pose estimation problem.











#### Pose Estimation

Method finds the **3D** rotation and translation linking the two images

A candidate pose for the camera of the image to register is set via {R,t} transformation

Objective function error is the sum of errors, or otherwise, the sum of distances of corresponding keypoints after application of the candidate registration.









### Objective function optimization

- PSO [Poli 2007]
- Stochastic technique in which several particles converge iteratively towards the solution after several generations
- Better robustness to local minima
- Simple, Parallelizable









#### Image formation

Using {R, t} solution and the eye model, **pixels from** the test image can be projected **upon the reference image frame** 

The **registered image** is formed by, inversely, **ray tracing** a pixel in the reference image, to **sample** its **color** from the test image.









#### Registration Result I









#### Registration Result II









#### 3D accuracy and budget study



**Registration error** for 3-stage PSO, for 100, 150 and 200 generations vs number of particles, for a small (left) and a large transformation (right) between the 2 images. RANSAC plot in red.







#### 2D registration accuracy

| Error (pixels)              | This work       | GDB-ICP         |
|-----------------------------|-----------------|-----------------|
| Mean and std (all)          | 0.4878 (0.2064) | 0.5158 (0.2395) |
| Mean and std<br>(periphery) | 1.5002 (2.0587) | 1.6082 (1.9087) |

Proposed method is a 5.43 % more accurate than GDB-ICP for all pixels, and 6.72 % for pixels located in the periphery.







## Conclusion

- Method for **retinal image registration** for fundoscopy images was proposed.
- Increased accuracy and robustness compared to state-of-the-art approaches.
- Large **computational cost justified** by the offline and critical nature of targeted applications.
- Future work warrants more sources of information, increase of optimized dimensions to include the shape and size of the retina as well as the camera parameters.







# Thank you for your attention!