

Retinal Image Registration Through Simultaneous Camera Pose and Eye Shape Estimation

CARLOS HERNANDEZ-MATAS (1,2)

XENOPHON ZABULIS (1)

ANTONIS A. ARGYROS (1,2)

1- Institute of Computer Science – FORTH

2- Computer Science Department – University of Crete

What is (Retinal) Image Registration?

Image registration involves a pair of images: reference and test.

Spatial **warping** of the **test image** so that its points are imaged at the 2D coordinates of the **corresponding** points in the **reference image**.

The reference and test images may **differ** with respect to the **viewpoint**, the **time** and the image **acquisition device**.

Retinal Image registration consists on the registration of retinal images.

What do we propose?

Registration via **simultaneous** camera **pose** and eye **shape** estimation.

Camera pose {R, t}

General eye shape and rotation {A, Q}

Solution $S = \{R, t, A, Q\}$

Why do we propose it?

To account for 3D shape and provide **more accurate registration**

Images with large FOV present large distortion around the periphery

To estimate the **approximate 3D** eye model

Opens the door for possible 3D measurements in the model

To obtain **3D registered images**

Feature detection and matching

Detect **corresponding points** in both images

Currently utilizing SIFT

Eye model

Transform Model Estimation: Initialization

Solve Perspective-n-Point (PnP) problem utilizing Random Sample Consensus (RANSAC)

Pose is calculated through the **minimization** of the **projection error** between the 2D and projected 3D points on spherical eye model

Provides an initial, coarse pose estimate

... which is then refined by the proposed method

Transform Model Estimation: Objective function

An objective **function** whose **minimization** will provide the pursued pose **estimate**

Objective function **sums** the **distance** of **corresponding points** in the **eye model**:

$$o(S_h) = \sum_j d_{j,h}$$

j enumerates the smallest 80% values of $d_{j,h}$

Transform Model Estimation: Particle Swarm Optimization

Stochastic technique in which **particles** search a multidimensional space, **converging iteratively** towards a global optimal **solution**

This **objective function**. The minimal is the pursued estimation.

This avoids exhaustive space search

No derivatives calculation (simple) due to **Robustness** to local minima

Parallelizable (CPU and GPU implementations)

Data

Dataset	1	2	3
# Image pairs	71	44	8
Examination session	Same	Same	Different
Overlap	> 75%	< 75%	> 75%
Anatomical changes	No	No	Yes
Indicative application	Super resolution	Mosaicing	Longitudinal study

Ground truth: Manually supervised corresponding points (SURF) matched automatically

Dataset 1

Dataset 2

Dataset 3

Comparative results: model

The higher the complexity of the model, the more accurate the registration

Comparative results: methods

Conclusion

Retinal image registration method.

Simultaneous estimation of

- (a) the relative 3D pose of the cameras that acquired the
- (b) the **parameters** and the **orientation** of an ellipsoidal model of the eye.

The performed experimental evaluation shows that the **better** the model **approximates** the eye, the **more accurate** the registration.

Proposed method is more robust and accurate than GDB-ICP, a widely employed method for retinal image registration

Dataset available

Dataset soon publicly available at http://www.ics.forth.gr/cvrl/fire

Thank you for your attention!