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What is image registration?
Image registration involves a pair of images: reference and test.

It consists on transforming the test image so both images are aligned in 
the reference image frame.

This is done by utilizing the common information in both images.

Retinal image registration consists on the registration of retinal images.

5
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Why is it important?
Analyzing small vessels 
promotes diagnosis and
disease monitoring
The retina allows to directly 
observe the microvasculature 
of the eye
Comparative analysis is 
facilitated by retinal image 
registration
Additionally, registration 
supports a range of 
applications
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What type of images?
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The eye’s general shape is quasi-spherical

Doctors use 2D images of the retina

These images are acquired using a fundus 
camera

[Gross 2008]
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Which are its challenges?
◦ Different viewpoints

◦ Image different areas of the retina.
◦ Small overlapping (little information).

◦ Projection distortion
◦ Projecting the quasi-spherical retina onto a flat image introduces radial

distortion.
◦ Anatomical changes due to retinopathy

◦ The information about the same eye area in two different images may be 
different.

◦ High accuracy
◦ Required to facilitate analysis by doctors and clinicians.
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Registration methods classification
◦ Spatial or frequency domain

◦ Global or local

◦ Transformation model used

◦ Intra- or. cross-modal
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Related work I
Freq Spa Local Global Intra Cross Linear Affine Projective Quadratic

Peli (1987) X X X X

Cideciyan (1992) X X X X

Matsopoulos (1999) X X X X X X

Laliberte (2003) X X X X X X X

Stewart (2003) X X X X X X X

Ryan (2004) X X X X X X

Matsopoulos (2004) X X X X X

Chanwimaluang (2006) X X X X X

Choe (2006) X X X X X

Yang (2007) X X X X X X X

Lin (2008) X X X X X

Chaudhry (2008) X X X X

Tsai (2010) X X X X X X X

Chen (2010) X X X X X X X

Deng (2010) X X X X X
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Related work II
Freq Spa Local Global Intra Cross Linear Affine Projective Quadratic

Perez-Rovira (2011) X X X X

Zheng (2011) X X X X X X X

Troglio (2011) X X X X

Gharabaghi (2012) X X X X

Ghassabi (2013) X X X X X

Reel (2013) X X X X X

Legg (2013) X X X X X

Bathina (2013) X X X X X X X

Chen (2014) X X X X X

Adal (2014) X X X X X X

Lee (2015) X X X X X

Wang (2015) X X X X X X X

Ghassabi (2015) X X X X X X

Liu (2016) X X X X X

Saha (2016) X X X X
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Retinal image datasets
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Plenty of retinal image datasets for diverse purposes
◦ Segmentation: CHASEDB1, DRIONS-DB, Drishti-GS, DRIVE, HRF, MESSIDOR, 

ONHSD and REVIEW
◦ Diagnosis: DIARETDB0, DIARETDB1, e-ophtha, INSPIRE-AVR, ROC, STARE and 

VICAVR
◦ User authentication: VARIA
◦ Retinal image registration: RODREP

Hard to find datasets suitable for retinal image registration:
◦ Most datasets have no image pairs for the same eye
◦ No datasets with ground truth to evaluate registration

Images FOV Resolution Pairs Large 
overlap

Small 
overlap

Anatomical 
differences

Ground 
truth

e-ophtha 463 45⁰ 2544x1696 144 Yes Yes No No

RODREP 1120 45⁰ 2000x1312 1400 Yes Yes No No

VARIA 233 20⁰ 768x584 154 Yes No No No



FIRE dataset
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Fundus Image Registration Dataset:
◦ 129 real retinal images acquired with a fundus camera
◦ 134 image pairs
◦ 3 categories
◦ Some image pairs with anatomical differences
◦ Evaluation via manually annotated control points

Publicly available at http://www.ics.forth.gr/cvrl/fire/

Images FOV Resolution Pairs Large 
overlap

Small 
overlap

Anatomical 
differences

Ground 
truth

e-ophtha 463 45⁰ 2544x1696 144 Yes Yes No No

RODREP 1120 45⁰ 2000x1312 1400 Yes Yes No No

VARIA 233 20⁰ 768x584 154 Yes No No No

FIRE 129 45⁰ 2912x2912 134 Yes Yes Yes Yes



S category
S is for “Similar”

71 image pairs

Significant overlap

No anatomic changes

A lot of potential information to use for registration

Least challenging category for registration

Image pairs can be used for super resolution
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P category
P is for “Pose difference”

49 image pairs

Minor overlap

No anatomic changes

Little potential information to use for registration

More challenging than previous category

Image pairs can be used for creating mosaics of the 
retina
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A category
A is for “Anatomic difference”

14 image pairs

Significant overlap

Anatomic changes

Corresponding points may look 
different due to retinopathy

More challenging than S 
category

Image pairs can be used for 
longitudinal studies
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Framework

24

Geometrical approach
Simultaneously estimate relative 
camera pose and eye shape and 
orientation
Project points from hypothetical 
cameras to an eye model
Distance of points in model should be 0
Solution is represented via 12 
parameters, divided in 4 groups:

◦ R: ["#, "%, "&]
◦ t: [(#, (%, (&]
◦ A: [), *, +]
◦ Q: [",, "-, ".]



Framework
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Method
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Keypoints
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Keypoints
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Keypoints are used to identify common points in the pair of 
images

Four types of keypoints and their combinations are studied
◦ SIFT [Lowe 2004]:  milestone method in extracting characteristic 

points in images.
◦ SURF [Bay 2008]: is another widely used method to detect and 

represent keypoints.
◦ Harris-PIIFD [Chen 2010]: Partial Intensity Invariant Feature Detector 

on Harris corners. Developed specifically for retinal image 
registration. 

◦ Vessel bifurcations: Bifurcations on the vessel tree are extracted.



Keypoints
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SIFT SURF PIIFD Bif S P A FIRE

X 0.945 0.443 0.577 0.721

X 0.947 0.348 0.466 0.675

X 0.846 0.134 0.429 0.538

X 0.953 0.516 0.563 0.751

X X 0.953 0.423 0.526 0.712

X X 0.951 0.396 0.503 0.699

X X 0.958 0.541 0.660 0.773
X X 0.940 0.264 0.426 0.636

X X 0.956 0.404 0.489 0.703

X X 0.954 0.472 0.563 0.736

X X X 0.952 0.333 0.491 0.674

X X X 0.956 0.435 0.480 0.713

X X X 0.959 0.490 0.657 0.754

X X X 0.954 0.400 0.474 0.699

X X X X 0.956 0.409 0.514 0.707



Eye model
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Eye model
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Four eye models are considered:
◦ Plane: Baseline model. Appropriate for images with a narrow 

Field of View. 
◦ A = !, #, $ = 10000, 10000, 1
◦ Q = (), (*, (+ = [0, 0, 0]
◦ Only {R, t} are calculated (6 parameters)

◦ Sphere [Navarro 1985]: Simplest full eye approximation. 
◦ A = !, #, $ = 12, 12, 12
◦ Q = (), (*, (+ = 0, 0, 0
◦ Only {R, t} are calculated (6 parameters)

◦ Fixed orientation ellipsoid
◦ A = !, #, $ = /), /*, /+
◦ Q = (), (*, (+ = 0, 0, 0
◦ {R, t, A} are calculated (9 parameters)

◦ Ellipsoid: The most complex model used.
◦ A = !, #, $ = /), /*, /+
◦ Q = (), (*, (+ = 0), 0*, 0+
◦ {R, t, A, Q} are calculated (12 parameters)



Eye model
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Model S P A FIRE

Plane 0.926 0.164 0.574 0.608

Sphere 0.45 0.385 0.617 0.703

FO Ellipsoid 0.951 0.498 0.626 0.750

Ellipsoid 0.958 0.541 0.660 0.773

The higher the order of complexity, the 
higher the capability to approximate 
the actual shape of the eye and the 
more accurate the registration



Swarm structure
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Swarm structure
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Initialization:
◦ No initialization: Test camera initialized to reference camera 

pose.
◦ Random Sample Consensus (RANSAC) [Fischler 1981]: 

Estimates the 3D pose of an object given a set of 2D-3D 
correspondences and the camera projection matrix. Spherical 
eye model

Optimization
◦ Attempt to minimize objective function. Sum of the 80% 

shortest distances of the corresponding points on the eye 
model

◦ We look for the solution on a search space with 12 
dimensions. 1 for each solution parameter. 

◦ Particle Swarm Optimization (PSO) [Kennedy 1995]:
◦ Particles are given random initial position and velocity in the space.
◦ Each particle represents a candidate solution (objective function evaluation)

◦ Particles evolve through generations.
◦ Requires few configuration parameters and no derivatives

! "# =%
&
|(& − *&,#|



Swarm structure
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Coarse (C): No initialization. PSO search in a coarse space

Coarse-to-Fine (CF): No initialization. 2 PSO searches. First a coarse
search followed by a fine search around the coarse solution.

RANSAC (R): Only RANSAC initialization is performed.

RANSAC-Coarse (R-C): As C, but with RANSAC initialization.

RANSAC-Fine (R-F): As R-C, but with a fine search instead of a coarse
one

RANSAC-Coarse-to-Fine (R-CF): As CF, but with RANSAC initialization.



Swarm structure
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Variant S P A FIRE
C 0.951 0.324 0.597 0.682

CF 0.952 0.453 0.537 0.724

R 0.933 0.209 0.549 0.624

R-C 0.960 0.532 0.603 0.765

R-CF 0.955 0.516 0.543 0.750

R-F 0.958 0.541 0.660 0.773



PSO budget
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PSO budget
PSO performs particles times generations objective function evaluations. 
This is  called ‘budget’ of the PSO process. 

A small budget will terminate the process prematurely with a poor pose 
estimate

A too large budget will lead to extra processing time with no noticeable 
improvements in accuracy.

Budget selection offers a trade-off between the accuracy and the speed of 
the method.

The distribution of the budget across particles and generations is relevant
to the final performance of the method.

Experiment covering budgets from 1000 to 9 million particles distributed 
across 200, 250, 300, 350 and 400 generations.
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PSO budget
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We aim for high 
accuracy, and we 
don’t need to 
perform registration 
on real time. As such
300 generations and 
10k particles per 
generation (3 million 
total) is our ideal 
trade-off between 
computational cost 
and accuracy



Multiple swarms
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Multiple swarms
Both RANSAC and PSO non-deterministic

The solution search is executed multiple parallel
times, denoted as swarms

The parameters of the best overall score in the 
objective function are selected as the solution.

This leads to an increase on the computational 
cost, but this solution offers increased accuracy, 
robustness and reliability.

41



Multiple swarms
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Swarms S P A FIRE
1 0.945 0.370 0.623 0.699

2 0.945 0.383 0.623 0.703

3 0.945 0.383 0.634 0.705
4 0.945 0.377 0.640 0.703

5 0.931 0.374 0.634 0.693

6 0.944 0.378 0.614 0.700

7 0.944 0.378 0.614 0.700

8 0.945 0.380 0.620 0.702

9 0.945 0.378 0.623 0.702

10 0.944 0.381 0.643 0.704



Data output
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Data output
R, t, A, Q solution

Warped 2D images

2D floating point pixel coordinates and color information for both 
images

3D coordinates on the eye model and color information for both 
images

Control point transformations (if control points were provided)

44



Final configuration
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Competing methods
Method is compared to GDB-ICP and Harris-PIIFD

They are widely applied in the field.

Generalized Dual-Bootstrap Iterative Closest Point (GDB-ICP) [Yang 
2007]: a local registration method in the spatial domain that performs 
quadratic registration of intra- and cross-modal retinal images. Face and 
corner points are used to iteratively register the image pair.

Harris-PIIFD [Chen 2010]: a local registration method in the spatial 
domain that performs quadratic registration of intra- and cross-modal 
retinal images. Corner points are selected and PIIFD are extracted. An 
adaptive transformation is used to register the image pairs.
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Competing methods
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Method S P A FIRE

Proposed 0.958 0.541 0.660 0.773
Harris-PIIFD 0.900 0.090 0.443 0.553

GDB-ICP 0.814 0.303 0.303 0.576
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Longitudinal Studies – FIRE
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Analyze differences across 
time

Study evolution of diseases
such as hypertensive 
retinopathy



Mosaicing – FIRE
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Display larger area of the retina in a single image



Mosaicing – other datasets
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RODREP

e-ophtha

VARIA



Multi-frame Super Resolution
Combine multiple images of the same scene, acquired from slightly 
different viewpoints to create an image of higher resolution and 
definition. 

The basis of SR methods is image registration. It enables the utilization 
of pixels from different images to be considered as additional samplings 
of the same function. 

Not study of SR per se, but the suitability of the proposed method for it.

2 sets of 9 images, downscaled to 1/3. Super resolution used to 
generate image of the original size.
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SNR SSIM MSE

Proposed 101.252 0.969 83.393
GDB-ICP 84.892 0.816 186.658

Harris-PIIFD -8.394 0.626 4322.3

SNR SSIM MSE

Proposed 56.515 0.930 190.004
GDB-ICP 55.256 0.929 199.528

Harris-PIIFD 39.307 0.589 415.985
Set 1 Set 2



Eye shape estimation
Two sets of synthetic images.

◦ Fixed pose ellipsoidal model (9 DoF).

◦ Generated from the same poses.

◦ 45⁰ and 100⁰ FOV

◦ One experiment searches all 9 parameters. In 
the other, c is fixed to the actual value.

◦ Error is indicated as the average of the 
percentage of the ground truth values.
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45⁰ 100⁰
8 DoF search 0.25% (30μm) 0.06% (7.2μm)

9 DoF search 6.54% (785μm) 0.52% (62μm)
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Future work
Cross-modal keypoints (PIIFD not accurate enough)

Global information extraction methods

More complex eye and camera models
◦ Currently using pinhole camera model and smooth surface ellipsoid
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Discussion
A retinal image registration method is proposed.

◦ It estimates the relative pose of the cameras as well as the general shape
and pose of the eye. 

◦ This enables 2D registration of the retinal images. Also attempts to 
reconstruct the eye shape. 

◦ The method has been shown to outperform competing methods
◦ The suitability of the proposed registration framework for applications such 

as longitudinal studies, mosaicing, super resolution and eye shape
estimation is explored.

◦ Executable made publicly available
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Discussion
The framework allows for generating synthetic data such as 3D eye 
models. 2D retinal images can be generated from an existing image 
texture. Additionally it allows to evaluate 3D shape estimation. 

FIRE dataset, with real images has been compiled and made publicly
available.

◦ Three categories of retinal image pairs. Each category with the intention of 
covering a different challenge in retinal image registration.

◦ For each image pair, ground truth in the form of control points is provided.
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Downloads

Registration executable
http://www.ics.forth.gr/cvrl/rempe

FIRE dataset
http://www.ics.forth.gr/cvrl/fire
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